NEURAL NETWORKS IN FINANCE: A DESCRIPTIVE SYSTEMATIC REVIEW

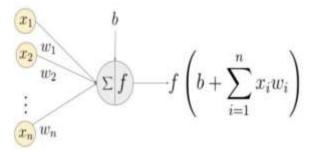
Dr. K. Riyazahmed Assistant Professor Shri Dharmasthala Manjunatheshwara Institute for Management Development Mysore, Karnataka, India E-mail: riyazahmed@sdmimd.ac.in

ABSTRACT

Traditional statistical methods pose challenges in data analysis due to irregularity in the financial data. To improve accuracy, financial researchers use machine learning architectures for the past two decades. Neural Networks (NN) are a widely used architecture in financial research. Despite the wider usage, NN application in finance is yet to be well defined. Hence, this descriptive study classifies and examines the NN application in finance into four broad categories i.e., investment prediction, credit evaluation, financial distress, and other financial applications. Likewise, the review classifies the NN methods used under each category into standard, optimized and hybrid NN. Further, accuracy measures used by the research work widely differ, in turn, pose challenges for comparison of a NN under each category and reduces the scope of formalizing a theory to choose optimum network model under each category.

Keywords: Neural Networks, ANN, Analytics, Machine Learning.

JEL Classification Codes: G1, G17, M150.


INTRODUCTION

Financial data are immensely available, yet the innate nature of big data shows uncertainty, incompleteness, and inconsistency which pose challenges in using traditional statistical methods for financial data analysis (Brooks et al., 2019; Hariri et al., 2019). Financial researchers try to overcome the traditional statistical limitations by using machine learning architecture like Neural Networks (NN).

NN imitates the human brain by using nodes and layers of connections, which pass signals with a set of associated weights and bias adjustments (Figure 1). NN results are not easily interpretable and so the analysis is in black-box nature. Irrespective of the non-interpretability of results, NN received importance in financial research due to its computing efficiency in handling financial big data.

For the last two decades, financial researchers are using NN in various analyses like risk classification (Altman, Marco, & Varetto, 1994), bankruptcy and share price prediction (Barr & Mani, 1994). Despite the attention, NN application in finance is yet to be well defined. The last decade saw an increase in the finance research using NN in an analysis like forecasting of *share prices* (Chang, Liu, Fan, Lin, & Lai, 2009; Sapna & Argente, 2003; Safer, 2002), *option prices*

(Lin & Yeh, 2009; Kohler, Krzyzak, & Todorovic, 2010), and the *future prices* (Dunis, Laws, & Evans, 2008; Laws & Dunis, 2013).

An example of a neuron showing the input ($x_q - x_n$), their corresponding weights ($w_q - w_n$), a bias (b) and the activation function f applied to the weighted sum of the inputs.

Figure 1. standard Neural Network

The Literature reviews of Feldman and Kingdon (1995), Wong and Selvi (1998), Vellido, Lisboa, and Vaughan (1999), Krishnaswamy, Gilbert, and Pashley (2000), Coakley and Brown (2000), Fadlalla and Lin (2001), Wei, Nakamori, Wang, and Yu (2007), Cavalcante et al. (2016), and Huang, Chai, and Cho (2020) are the existing works in this regard. Yet, the review works show significant limitations. Firstly, no review follows a protocol-based review process which is essential for reproducibility. Secondly, several reviews are not examining financial applications entirely or they focus on aspects like soft computing, and computational intelligence, instead of NN architectures (Table 1). Even though the studies analyze the NN applications to a certain extent, non-reproducibility is a serious concern.

Further, the absence of a systematic review method results in serious drawbacks in the quality of review findings (Karunananthan, Maxwell, & Welch, 2020). Systematic reviews have greater potential than other research designs leading to the reproducibility of research (Shokraneh & Adams, 2019). Since the computing efficiency doubles every two years (Gustafson, 2011) which improves the efficiency of handling complex data sets, exploring the research works to date with the scientific review methods will help to understand the existing status of NN in analyzing the financial data.

Study	Period of	Nature of	Focus of the	Summary of conclusion
	review	study	study	
Feldman and	1988-1996	Descriptive,	Advantages of	Generalization,
Kingdon (1995)	(*Authors'	Non-	MLP, BPNN,	architecture selection,
	estimation)	Systematic	and SOM.	and application of
		review.		selected NN.
Wong and Selvi	1990 - 1996	Descriptive,	Classification	The implication to NN
(1998)		Review	of NN	developers.
		process	application in	-
		disclosed.	finance.	
Velido, Lisboa,	1992 – 1998	Descriptive,	Application of	Comprehensively

Table 1. Summary of existing reviews

and Vaughan		Review	NN in	reported the most quoted
(1999)		process	business.	advantages and
		disclosed.		disadvantages of NN in
				various business
Vrichnoowomy of	1989 – 1996	Decorintivo	Description of	applications.
Krishnaswamy et al. (2000)	(*Authors'	Descriptive, Non –	Description of NN and its	Backpropagation NN has proven robust.
al. (2000)	estimation)	systematic	finance	Supervised and
	c stillation)	review	application.	unsupervised NN is used
			11	in finance.
Coakley and	1988 – 1997	Descriptive,	Financial	ANN researchers face a
Brown (2000)	(*Authors'	Non –	Application,	challenge that there are
	estimation)	systematic	development	no formal theories for
		review	of ANN	determining optimal
Fadlalla and Lin	1086 1007	Descriptive,	models. Financial	network model NN has great promise
(2001)	1900 - 1997	Non –	Application,	for financial applications
(2001)		systematic	focus on	and combinations of two
		review	feedforward	approaches should be
			and feed	investigated.
			backward NN	
			models.	
Calderon and	1993 – 1999	Descriptive,	NN in	NN shows promising
Cheh (2002)		sources of review	auditing and risk	performance in Preliminary analytical
		disclosed.	management.	procedures in the
		disclosed.	management.	auditing process.
Wei Huang et al.	NA	Descriptive,	Focus on input	The prediction
(2007)		Non –	variables, NN	performance of neural
		systematic	models	networks can be
		review	applied in	1 0
				integrated with other
			market, and economic	technologies.
			forecasting.	
Cavalcante et al.	2009 -2015	Descriptive,	Computational	Categorized studies into
(2016)		review process	intelligence in	preprocessing,
		disclosed	finance (NN is	forecasting, and text
			a part of the	mining.
	2014 2010		study)	
Huang et al.	2014 - 2018	Descriptive,	Deep learning	Reports about data
(2020)		review collection	applications in finance and	inputs, preprocessing and evaluation rules of
		process	banking.	deep learning in finance
		disclosed.	Janking.	and banking
	I	alberobea.	I	

Hence, this structured review reveals an interpretable pattern of NN architectures and their application in finance research. The study follows the systematic review process provided by Moher, Liberati, Tetzlaff, Altman, and The PRISMA Group (2009) and Gupta, Chauhan, and Jaiswal (2019). The primary aim of the study is to classify the research papers based on their NN application in finance research. This is done by,

- Classification of major topics and sub-topics, and
- Identification of various NN architectures used in the classified subtopics.

METHOD

A literature review starts with searching for quality research papers from prominent journals (Ngai & Wat, 2002). Further collecting research papers from the online database has become an emerging culture in the information era (Petter & Lean 2009). So, this study uses the EBSCO Business Elite database, which is a repository of 525 peer-reviewed research journals, to collect research papers. The systematic review process prescribed by Moher et al. (2009) comprises defining a protocol for literature search, exclusion criteria of research papers, and final selection of papers (Figure 2).

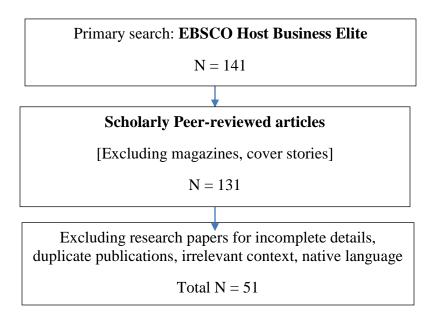


Figure 2. Selection process of research papers (Moher et al., 2009)

Protocol directs the research paper selection based on the criteria. To obtain research papers the study followed an advanced search option in the EBSCO Business Elite database and used two keywords 'Neural Networks' and 'Finance'. Research studies published in English under the subject areas of business, management, and finance are only considered. Empirical articles that are published in peer-reviewed academic journals are collected at the first level.

Restricting the review only to published articles can strengthen quality control since many of the academic journals follow meticulous publishing criteria in terms of research contribution and robustness of the results (Light & Pillemer, 1984). The protocol process has helped to collect papers with high research quality. After collection, the studies with incomplete details, irrelevant context, and duplicate publications are excluded. After exclusions, data extraction is done by carefully considering the title, abstract, and overall theme of the paper focuses on applying NN in finance. 141 papers are collected from the EBSCO Business Elite database and during the first level of screening 77 research papers are excluded. Finally, 51 research papers are considered for review.

RESULTS

The researcher scrutinized the collected research articles for their relevancy and suitability to be considered as a part of this review paper. When research papers fulfill the established criteria, the author read the full paper to find its contributions. Figure 3 represents the broader classification of research papers under major topics and sub-topics.

IP – Investment Prediction; CE – Credit Evaluation; FD – Financial Distress. Figure 3. Classification of research papers based on major topics and sub-topics

Based on the reading the author identified four main topics and several subtopics (Table 2). The next section discusses each main topic, inferences of the research work carried in the subtopics based on the NN methods. Further, NN with statistical and architectural advancements is classified as 'Optimized NN'. NNs incorporating financial theories and knowledge are classified under 'Hybrid NN'. A model-free NN is classified as 'Standard NN'.

Table 2. Major research topics and subtopics

Main topics	Sub-topics
Investment prediction	Prediction of options prices, futures prices, share prices, Forex,
	indexes, bond yields, commodity spreads, trading patterns,
	shareholder wealth, and portfolio performance.
Credit evaluation	Predicting credit risk, and
	Estimating credit rating.
Financial distress	Evaluating financial distress
Other financial applications	Development of financial intelligent system,
	Detecting fraudulent financial reporting,
	Assessment of systematic risk,
	Evaluating operating performance,
	Assessing project portfolio performance.

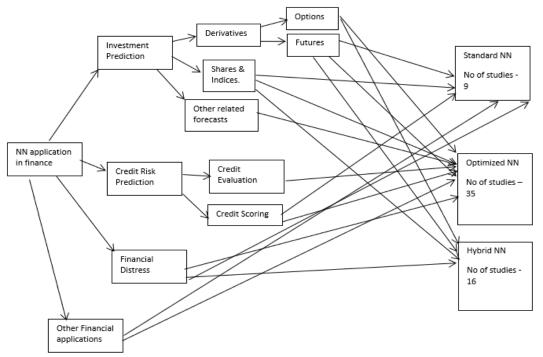


Figure 4. Framework of NN application in finance

DISCUSSION

Investment Prediction:

Derivatives a) Options Optimized NN –

Back Propagation NN (BPNN) – BPNN minimizes the prediction error by giving the nodes with higher error rates lower weights and vice versa. Hence, BPNN is found to be more suitable for derivative prediction (Kaastra & Boyd, 1995). When used to predict Taiwan stock index options, BPNN demonstrated improved accuracy in support of hedging at in-the-money option (Lin & Yeh, 2009).

Likewise, the research study of Hutchison et al. (1994) used BPNN to predict the prices of S & P 500 futures and options, yet the result is that BPNN did not show significantly better accuracy than other linear models like ordinary least squares.

NN with Monte Carlo simulation – Monte Carlo, is a simulation technique to understand the impact of risk and uncertainty in prediction. It is used with linear NN for predicting American options (Kohler et al., 2010). Since it is a simulation based NN, the accuracy would widely differ in empirical prediction.

Advanced Modular NN (AMNN) – AMNN is a series of independent NN which serves as a module and operates on separate inputs to accomplish a subtask. AMNN gives more accuracy than the standard NN when predicting European call option prices (Gradojevic et al., 2009).

Feed forward NN (FFNN) – FFNN is used when the nature of financial data is neither sequential nor time-dependent. FFNN predicts European Index options and S&P 500 European call options more accurately than standard NN (Gencay & Gibson, 2007).

Hybrid NN -

NN with Black Scholes - The research study by Blynski, and Faseruk (2006) compared the effectiveness of option price forecasting using the traditional Black Scholes model with NN (hybrid NN) and standard NN. Likewise, the research study by Chen and Sutcliffe (2012) confirms that a hybrid NN along with Black Scholes predicts accurately than the standard NN or Black Scholes model individually. Similarly, Sperckelsen et al. (2014) used Black Scholes model variables in predicting option prices of currency futures (EUR/USD and concluded that the hybrid model is better than the theoretical option pricing model and MLP.

NN with Black Scholes & Wavelet – Zapart (2003) in his research study uses Wavelet along with NN and Black Scholes. Wavelet is a mathematical advancement that addresses oscillations that decays quickly in a data set. The study found that Black Scholes NN with Wavelet predicts superior when analyzing option prices.

Hybrid Black Scholes NN with stochastic volatility - Stochastic volatility represents the nature of volatility fluctuating over time. The research study by Gencay and Gibson (2007) found that the hybrid NN model with stochastic volatility predicts better than the standard NN Model while predicting European stock index options.

b) Futures –

Standard NN – Model-free NN, without the attributes of financial theories, also performs significantly in the case of predicting currency futures prices. A model-free NN is used to predict the high-frequency currency futures and the predictability power is better than the closed-form financial model (Sperckelsen et al., 2014).

Optimized NN -

Multilayer perceptron (MLP) – MLP commonly represents a feed-forward NN with three layers. MLP is used to predict the commodity futures to hedge against corn and ethanol spreads and found to be accurate in prediction (Dunis et al., 2015). Likewise, Karathanasapoulos et al. (2016) used MLP in gasoline futures contracts.

Higher-order NN (HONN) -HONN utilizes a higher combination of NN inputs. The research study of Dunis et al. (2015) compared the performance of HONN with MLP. The study concludes that MLP and HONN are superior in predicting with leveraging option. Sermpinis et al. (2013) tested HONN in predicting index futures. Likewise, Karathanasapoulos et al. (2016), in their research study used HONN to predict gasoline futures contracts.

Radical base function neural network (RBFNN)– Karathanasapoulos et al. (2016) used a radical basic function neural network (RBFNN) to improve the trading performance of futures. RBFNN transforms the input signal into another form, which can be then feed into the network to get linear separability. The study concludes that RBF NN is superior in both trading performance and statistical accuracy.

Hybrid NN -

Feature transformed NN – Kim (2004) used feature transformed NN, including domain-specific factors like relative strength index to predict the futures prices and found that feature transformed NN predicts accurately than the linear models and concludes that incorporating domain knowledge in NN architecture improves performance.

Shares & Indices –

Standard NN -

Haefke and Helmenstien (2002) used NN in forecasting indices and inferred that applicability of information criteria is important in the selection of NN. In contrast, Moreno and Olmeda (2007) claim that NN is not superior in predicting the stock markets to the linear models.

Optimized NN -

NN with Statistical optimization – LV D et al. (2020) used principal component analysis (PCA), Least absolute shrinkage and selection operators (LASSO), classification and regression trees (CART), and Piecewise linear representation methods (PLR) to optimize NN. As a result, there no significant improvement in NN incorporating the features, however, NN with PLR, resulted in an improvement in profit through better forecast ability.

Back propagation (BPNN) and Piecewise linear representation (PLR) – In a research study by Chang et al. (2009), it is found that BPNN along with PLR consistently created good results for predicting upward, steady, and downward trends of stock prices.

Hybrid NN -

NN with Fama French five-factor model - Besides customizing the NN, researchers have used financial models like Fama and French five-factor model with NN and found improvement in the profitability of investors in both linear and nonlinear data (Jan & Ayub, 2019).

NN with GARCH model– Ozbey and Paksoy (2020) combined GARCH with NN and compared the performance of the hybrid model with the classic GARCH model. The study found that the hybrid model is superior in predicting volatility to the classic GARCH.

NN with Top-down theory, technical analysis, and dynamic time series methods –Huang, G.,Huang,GB., Shiji, and Youa (2014) used integrated models using conventional top-down trading theory, technical analysis, and dynamic time series methods and concludes that the hybrid system gives remarkable investment returns and demonstrates promising potential tools for stock market forecasting.

Other related financial forecasts – Optimized NN –

Back propagation NN (BPNN) –Chiang et al. (1996) used BPNN to predict the Net Asset Value (NAV) of mutual funds and found that BPNN outperforms the regression model. Jain and Nag (1995) predicted the prices of initial public offering (IPO) using BPNN and found significant economic benefits in BPNN.

Multi-layer perception (MLP) – Indroa et al. (1999) used MLP and compared it with stepwise linear regression. The results show that MLP is superior to the linear model.

General regression NN (GRNN) –Barnes and Lee (2009) used GRNN in analyzing the effect of macroeconomic and firm-specific factors in determining shareholder wealth.

Multivariate NN -Wie et al. (2004) used Multivariate NN to predict earning per share in comparison with univariate and multivariate linear models incorporating fundamental accounting variables and found that NN along with accounting variables predicts more accurately than linear forecasting models.

								R Squared	
	Author(s)	Purpose	NN Model	Sample	Period	Predictors	Comparison	Value	Accuracy
		Forecastin							
		g							
		Economic	Back						
	Kaastra and	time-	Propagation	Conceptu					
1	Boyd (1995)	series data	NN	al Paper	-	-	-	-	-
				15 582					
				call					
		Forecastin	Back	option		Black			
	Lin and Yeh	g Option	Propagation	price data	2003 -	Scholes			MAPE
2	(2009)	Prices	NN	points	2004	variables		-	5.2534
			Ordinary						
			Least squares,						
			Radical Basis						
			functions						
		Pricing	network,				No		
		and	Multi-layer	S&P 500			significant		
		Hedging	Perceptron,	Future		Black	difference		
	Hutchison et	derivative	Projection	and	1987 -	Scholes	between		
3	al. (1994)	securities	Pursuit	options	1991	variables	models	84.76	-
		D		Monte					
	¥7 11 . 1	Pricing of	T .	Carlo					
	Kohler et al.	American	Least square	Simulated					
4	(2010)	Options	NN	Data	-	-	-	-	-
				S&P-500					
				index					
				European call					
				option					
				prices,					
		Pricing		Chicago					
1		European	Modular NN	Board		Black	BS NN		
	Gradojevic	Call	& Black	Options	1987 -	Scholes	Model >		MAPE
5	et al. (2009)	options	Scholes NN	Exchange	1987 - 1994	variables	Modular NN	-	MAPE 1.87
5	et al. (2007)	Pricing	SCHOICS ININ	S&P 500	1224	Price of the	FFNN >	-	1.07
		European		index9		underlying,	Stochastic		
1	Gencay and	Stock		options		strike price,	volatility		
1	Gibson	Index	Feedforward	from the	1989 -	volatility,	(SV) and		
6	(2007)	options	NN	Berkeley	1989 -	interest	stochastic	_	
0	(2007)	options	1111	Derkeley	1771	murest	stoenastie	1	

Table 3. NN research in Investment prediction

							1		
				Option		rate, time	volatility		
				Database		to maturity	random jump		
							(SVJ),		
		Comparin g Option prices forecast of NN with		64, 280					
	Blensky and	Black	Back	OEX 100			NN > Black		
	Fasurek	Scholes	Propagation	Index call	1986 –		Scholes		
7	(2006)	model	NN	option	1993	-	model	-	-
-	(_ • • • •)	Pricing		• F ··· ··					
8	Chen and Sutcliffe (2012)	and hedging short sterling options	Standard NN, Modified Black Model NN, and Hybrid NN	Short sterling futures traded on NYSE	2012 (Quarterl y expiry cycle)	Ask, bid, trade, spread trade, and block trade,	Hybrid NN > Modified Black model, Standard NN	r = 98.6864	-
9	Sperckelsen et al. (2014)	Realtime pricing of options on currency futures	Model-free option pricing NN, Multi- Layer Perceptron	EUR/US D option on currency future from Chicago Mercantil e Exchange (CME)	2012	Futures price, Strike price, Expiration time, Risk- free rate, Asset volatility	Hybrid NN > theoretical option pricing model	99%	MAPE 0.3146
10	Zapart (2003)	Pricing European and American Call options	NN with Binomial trees and Wavelets, NN with Genetic algorithm and Black Scholes model	Options prices as quoted on the Chicago Board Options Exchange are used	2003	Time to expiry, current stock price, risk-free rate	-	-	-
1	Dunis et al.	Modeling corn/ethan ol crush	MLP, HONN,	Ethanol futures contract traded in Chicago	2005 -		GPA >		
1	(2015)	spread	GPA	Board	2010	Leverage	HONN, MLP	-	-
1 3	Sermpinis et al. (2013)	The forecastin g FTSE 100 futures	Higher-order NN, Multi- Layer Perceptron, Recurrent neural networks	FTSE 100 futures	2007 - 2008	Realized daily returns (21 days)	HONN> MLP, RNN	-	18.85%
1 4	Karathanaso poulos et al. (2016)	Modeling crack spread	RBF, PSO, MLP	-	2005 - 2015	20 ARIMA and 10 GARCH models	PSORBF > MLP	-	-
1	Kim (2004)	Future	Feature	Korean	May to	Positive	Feature	-	-
1	11111 (200 4)	i uture	i cature	ixorean	may to	1 0511110	1 cature	I	

~		•		. 1	NT 1	1			I
5		price	transformed	stock	Novemb	volume	transformed		
		prediction	ANN based	index	er 1996	index, Rate	ANN >		
			on domain	(KOSPI)		of Change,	Linear ANN		
			knowledge			Momentum			
					2	, etc.			
					2 Novemb				
		Index			er		The proposed		
		Forecastin		Austrian	1992 to	Geometric	integrated		
	Haefke and	g and		Traded	1992 10	mean,	model shows		
1	Helmenstien	Model	Feedforward	Index	October	arithmetic	significant		AMAPE =
6	(2002)	Selection	NN	(ATX)	1994	mean	performanc	0.041	1.862
-	(2002)	Predictabi		(1111)	March	meun	periormane	0.011	1.002
		lity of		49 MSCI	1995 to				
		emerging		(Morgan	March of				
		and		Stanley	2001				
		developed		Capital	(1560	index	NN is not		
	Moreno and	stock		Internatio	daily	returns,	superior to		
1	Olmeda	markets		nal)	observati	daily and	the linear		
7	(2007)	using NN	Standard NN	indexes	ons)	weekly	models	-	-
			MLP, Deep		Past				
			Belief		2000				
			Network		trading				
			(DBN),		days of				
			Stacked		SPICS	44			
		D' '	Auto-	110	and	technical,			
		Dimensio	Encoders	US SPICS	CSICS before	Volatility,			
		nality reduction	(SAE), RNN, LSTM, Gated	and the	Decembe	Psychologi cal, cash			
1	LV D et al.	in stock	Recurrent	Chinese	r	flow			
8	(2020)	trading	Unit (GRU)	CSICS	31, 2017	indicators.	LASSO NN	-	-
0	(2020)	uuuing	Oline (Give)	CSICS	51, 2017	Moving	LIBBOTIN		
						average,			
		Stock			2004/01/	Bias, RSI,			
		Trading			02 to	ninety days	PLR +GA		
1	Chang et al.	Points	BPNN, GA,	Stock	2006/04/	stochastic	improves		
9	(2009)	Prediction	PLR	Prices	12	line, etc.	Profitability	-	-
		Improving							
		the		Manufact					
		predictabil		uring		Market			
		ity of		companie		cap,			
		Fama		s in		BV/MV			
	T 1	French		Pakistan	2000	ratio, % in			MOL
2	Jan and	five-factor	Standard NN	Stock	2000 to	total assets,	NN improves	<i>a</i> = 0.00080	MSE =
0	Ayub (2019)	model	Standard NN	Exchange	2015	and EBIT	FF model	r = 0.99989	0.0012
		Estimatio n of index					Unbrid NN 1		
			Hybrid NN	Borsa		Borso	Hybrid NN + GARCH >		
	Ozbey and	returns with	Hybrid NN, Exp GARCH,	Istanbul		Borsa Istanbul	Hybrid NN +		
2	Paksoy	GARCH	and Nor.	100 price	2017 -	100 Index	normal		MSE =
1	(2020)	and NN	Distrn	Index	2017 - 2018	value	distribution	_	0.015926
-	Huang,	Integrated	Top-down	Taiwan	_010	Stochastic	Integrated		0.012920
	Huang,	data	trading theory	Semicond		KD,	NN model		True
2	Shiji, and	mining in	+ ANN +	uctor	2011 -	William	improves		positive =
$\frac{1}{2}$		-					-	-	98.50%
	Youa (2014)	stock	technical	Manufact	2013	%R, RSI,	stock	-	

		c i	1 .			DOVI		Γ	1
		forecastin	analysis +	uring		PSY line,	forecasting		
		g	dynamic time	Company		ADX, MA,			
			series + and	and		MACD			
			Bayesian	Evergreen					
			probability	Marine					
			· ·	Corporati					
				on					
				011		GNP,			
						Consumpti			
						on,			
						Investment,			
				6 Year					
						CPI,			
				economic		Money			
		Mutual		variables		supply,			
		Fund		and 101		unemploy	BPNN >		
		NAV		US		ment, T-	Linear &		
2	Chiang et al.	forecastin		mutual	1981 -	bill, Long	Non-Linear		MAPE =
3	(1996)	g	BPNN	funds	1986	term rate	regression	0.989	8.76
		- Ŭ				11			
						variables			
						[Size,			
						Underwrite			
				550 DO		r, sales,			
				552 IPOs		ROA, ROI,			
		Predicting		in the		Assets			
2	Jain and Nag	IPO		United	1980 -	turnover,			
4	(1995)	pricing	FFNN	States	1990	etc.]	-	-	-
		Predicting		Morningst		Annualized			
		mutual		ar Mutual		return,			
		fund		Funds		turnover,	MLP >		
2	Indroa et al.	performan		On-Disc	1993 -	P/E, P/B,	Linear		MAPE =
5	(1999)	ce	MLP	database	1995	Mar.Cap	models	-	4.88
	(****)	Effects of		Juliouse					
		Macroeco		Miscellan		D/E, Gross			
		nomic-							
				eous		margin,			
		Firm-		Industrials		Debt to			
		Specific		in		cash, EVA,			
		Factors	~ -	the		EPS,			
		on	General	Australian		WACC	ANN is		
2	Barnes and	Sharehold	regression	Stock		funds,	effective in		MAE =
6	Lee (2009)	er Wealth	NN (GRNN)	Market	2007	ROIC	the prediction	0.0548	37.649
						Inventory,			
						A/R,			
						capital			
						expenditure			
						, gross			
				Quarterly		, gross margin,			
		NNI	University						
		NN model	Univariate-	EPS of		Sel.Adm	NTNT		
1		for EPS	NN and	283	1005	exp, Tax	NN models >		
-		1	I manufation and a day	Loomponio	1992 –	rate, labour	Linear	1	MAPE =
27	Wie et al. (2004)	forecastin g	multivariate NN	companie s in SEC	2002	force	models		0.362

Credit Risk Prediction: Credit evaluation – Optimized NN –

Bayesian regularized NN (BRNN) - Sariev and Germano (2020) used BRNN to Predict the Probability of Default and found BRNN superior in prediction.

Back propagation NN (**BPNN**) – Loss-given default (LGD) is used in credit risk assessment. LGD is the share of an asset that is lost if a borrower default. Loterman et al. (2012) compared the nonlinear techniques with the linear counterparts in predicting LGD of major international banks.

Feed forward NN (FFNN) – Qi and Zhao (2011) found that nonparametric method like FFNN and regression tree predicts the LGD accurately both in and out of sample than their parametric counterparts. Cifter et al. (2009) investigated the relationship between industrial production and credit defaults (nonperforming loans) using FFNN based on wavelet decomposition.

Fuzzy mathematical model –Aiqun et al. (2020) applied NN in risk assessment of logistic finance using back propagation NN and Fuzzy mathematical model. The study found that NN with the fuzzy mathematical model is accurate in risk assessment. Further, Baesens et al. (2003) provided a table with a graphical format that facilitates easy consultation to interpret the NN results.

Credit Scoring –

Standard NN -

Chikolwa and Chan (2008) compared NN with ordinal regression (OR) to study the determinants of Commercial Mortgage-Backed Securities (CMBS) and concluded that NN is superior in prediction to OR. Trinkle and Baldwin (2007) applied NN in credit evaluation for loan finance and concluded that NN can be used in the credit scoring process with caution because of its hidden nature.

Optimized NN -

Backpropagation NN– Hajek (2011) applied NN to rate the United States municipalities in the state of Connecticut and found a higher accuracy of NN in classifying the municipalities with a limited subset of variables. Zan et al. (2004) compared the performance of Support vector machines (SVM) with back propagation NN (BPNN) on the credit rating of companies and found that both SVM and BPNN have the same accuracy in predicting the credit rating.

	Author(s)	Purpose	NN Model	Sample	Output Variable	Predictors	Comparison	R Squared Value	Accuracy
				East		Payables			
		Estimatio		Europea	2007 -	turnover,			
		n of the		n,	2012	ROA, cash			
	Sariev and	probabilit		German,	(EE),	ratio,			
	Germano	y of	BRNN,	and	2007 -	sales/total	BRNN >		
1	(2020)	default	BPNN	Polish	2013 (P)	assets,	BPNN	-	-

Table 4. NN literatures in Credit Risk analysis

				data		LA/TA, interest			
						coverage			
2	Lotterman et al. (2012)#	Benchmar king regression algorithms for loss given default modeling	NN, SVM, and OLS.	six LGD datasets from internati onal banks	-	-	SVM, NN > Linear Models	0.1295	MAE = 0.3118
3	Qi and Zhao (2011)#	Comparis on of modeling methods for Loss Given Default	OLS, fractional response regression (FRR), inverse Gaussian regression (IGR), and inverse Gaussian regression with beta transforma tion (IGR- BT), and regression tree (RT), NN	3751 defaulte d securitie s in the US, Moody' s Ultimate Recover y Databas e	1985 to 2008		NN, regression tree > linear regression, fractional response, OLS	0.576	
4	Cifter et al. (2009)	Examine the relationshi p between industrial productio n and credit defaults	FFNN using Wavelet decomposi tion	83 monthly observat ions Industria 1 producti on and credit default rates are from Central Bank of Turkey	2001 to 2007	Industrial production, Credit defaults all sectors, Wholesale, and retail trade	Industrial cycle affects the sectoral credit-default cycles at different. time scales	-	MSE = 0.00022
F	an (2007)	Risk		I diffe y					5.00022
5	Aigun et al. (2020)	assessmen t of logistic finance Rule	BPNN and Fuzzy mathemati cal MLP,	- German	2019	- Term of	NN +Fuzzy is accurate in the prediction Extract very	_	-
6	Baesens et al. (2003)	Extraction and Decision Tables	NILF, Neuro rule, Trepan, and Nef	credit dataset from UCI	_	loan, Purpose, savings account	compact rule sets and trees for all data sets	-	-

	1		1	•.		1 1		[
		for Credit-	class.	repositor		balance,			
		Risk		y, Bene1		income,			
		Evaluatio		and		property,			
		n		Bene2		No. of years			
				datasets		as a client,			
				from		Economical			
				Benelue		sector			
						sector			
				X					
				financial					
				institutio					
				ns					
						Loan to			
						value; Debt			
						Service			
						Coverage			
						Ratio; issue			
1						size; bond			
1						tenure,			
1				MBS		property			
				credit		diversity,			
1		Determina	Standard	ratings		geographica			Classificati
	Chikolwa	nts of	NN Vs	of		l diversity,	ANN >	Pseudo R	on
1	and Chan	credit	Ordinal	Standard	1999 -	CMBS	Ordinal	squared =	accuracy =
7	(2008)	ratings	regression	and Poor	2005	rating	regression	0.018	80%
,	(2000)	Tutings	regression	Two	2005	Tuting	regression	0.010	0070
				German					
				consume					
			ANN	r credit					
		Interpreta	models	data					
		ble credit	created	sets,					
	Trinkle	model	from	SAS					
	and	developm	previous	data		Age, car,	ANN >		Accuracy
	Baldwin	ent using	research	repositor		cards, Cash,	General credit		rate =
8	(2007)	NN	studies	-	-	etc.	models	-	0.63084
0	(2007)	111	studies	У	-	Population.	models	_	0.0300+
						Population			
						growth,			
1						median			
						family			
						income,			
			FFNN,			unemploym			
1			RBFNN,			ent rate,			
			Probabilist			total			
			ic NN,			revenue to			
				Cradit					
1			Cascade	Credit		total			
1			correlation	informat		expenditure,			
			NN, Group	ion's of		tax revenue			
			method of	r 169		to total			
1			data	US		revenue, tax			
1			handling	municip		collectibles,			
		Municipal	(GMDH)	alities		debt			PNN,
1		credit	polynomia	(located		service,			Classificati
		rating	1 NNs,	in the		total debt to			on
		modeling	Support	State of		the total	An accurate		Accuracy
	Hajek				2002				
1	палек	by neural	Vector	Connect	2003 -	population,	credit rating	1	test =
9	(2011)	networks	Machines.	icut)	2007	tax	classification	-	98.8%

						collection rate, form of income.			
		Credit rating analysis	backpropa gation	Taiwan Ratings Corporat ion, Securitie s and					
		with support vector machines	neural network (BNN) Vs Support	Futures Institute, S&P Compus		TA, TL, DE, CR, ROA, ROE,	BNN, SVM		
1 0	Zan et al. (2004)	and neural networks	vector machines	tat data set.	1991 to 2000	EPS, NOI, NII, etc.	>Linear regression	-	Accuracy rate = 80%

Cross validation

Financial Distress:

Optimized NN –

Multi-layer perceptron (MLP) –Loukeris and Eleftheriadis (2015) used MLP, hybrid MLP with neurogenetic, and voted perceptron algorithm (VPA). VPA is a method that linearly separates data with a larger margin to predict financial distress. Manel (2012) used five MLP and compared them with traditional financial analysis to predict financial distress and found that the MLP is superior in accuracy.

Learning vector quantization (LVQ) – LVQ is a NN method with a supervised algorithm to let choose the number of training instances to hang on to. Brockett et al. (2006) compared the multiple discriminant analysis (MDA) and logistic regression with LVQ to analyze the solvency of life insurance companies and found NN architectures are superior in predictions.

Hidden layer learning vector quantization – Like LVQ, hidden layer LVQ (HDLVQ) outperforms the traditional NN methods and financial techniques while evaluating the corporate solvency of life insurance companies. The research study by Neves and Vieira (2006) integrated HDLVQ to correct the outputs of MLP and found the technique is superior to traditional techniques like z core models and standard NN.

Hybrid NN -

Fuzzy analytical hierarchy and CAMEL model – CAMELS framework is the most widely applied methodology to study the financial position of banks. Wanke et al. (2016) used NN with a fuzzy analytical hierarchical model along the CAMELS framework to predict the financial distress of banks.

Z score model –Z score model is a financial technique to evaluate the financial distress of a company. Pradhan (2011) used NN along with Z score and found it classifies accurately.

Profitability index and capital structure variables –Willer et al. (2020) created a business insolvency forecasting model using NN and found that the predictable power of NN shows significant accuracy. Yang et al. (1998) and Atiya (2001) confirms the accuracy.

Table 5.	NN literatures	in Financial	distress
----------	----------------	--------------	----------

		D	NN		Output	D		R Squared	
	Author(s)	Purpose	Model	Sample	Variable	Predictors	Comparison	Value	Accuracy
			MLP, hybrid						
			MLP						
			with						
			neurog						
			enetic,	1411					
			and	compan					
	T 1 ·		voted	ies from					
	Loukeris and	Credit portfolio	percept ron	Greek commer					
	Eleftheria	selection	algorith	cial	1994 to	16 Financial			
1	dis (2015)	process	m	bank	1997	ratios	-	-	MSE 0.034
		1		528					
				Tunisia					
		DU		n firm					
		Predictio n of		(Central bank of		26 financial			Classificati
	Manel	financial		Tunisia		ratios predicting			on accuracy –
2	(2012)	distress	BPNN	report)	1999 - 2006	distress	-	-	98.9%
			back-	1 /					
			propag						
			ation						
			and learnin						
			g						
			vector						
			quantiz						
			ation						
			(LVQ) Vs						
		Compari	vs multipl						
		son of	e						
		NN and	discrim						
		statistical	inant						
		models	analysi						
		for life	s and	T					G
		insurers' financial	logistic regressi	Texas Depart			BNN, LVQ >		Correct rate $(1994) =$
	Brockett	distress	on	ment of			MDA,		LVQ
	et al.	predictio	analysi	Insuran	1991 to		Logistic		(1.00), BP
3	(2006)	n	S	ce data	1995	IRIS variables	Regression	-	(0.971)
		Improvin	Learnin	780,000					
		g Donkmunt	g	financia 1					
		Bankrupt cy	vector quantiz	ı stateme					Generalisat
		Predictio	ation +	nts of					ion error:
		n	Multi-	French					MLP =
	Neves and	with	layer	compan		Input consists of			8.8%,
	Vieira	Hidden	percept	ies,	1000 2000	30 financial			HLVC-Q =
4	(2006)#	Layer	ron	Industri	1998 - 2000	ratios			7.3%

Vector Quaniza iionFrench firms, 583 bankrupFrench firms, bankrupFranci al ratios of 88Franci al ratios of 88Wank et B al (2016)Fredictin g performa n ce in ne in n of n of firms,Franci al ratios of 88Possible to explain the causes of analytic to of 68Wank et 6 al (2016)Fuzzy analytic banksSouthea southea to of 68Possible to explain the causes of inefficiencyWank et 6 al (2016)Fuzzy banksNN bank2010 to StatePossible to explain the causes of inefficiencyRMSE = 0.0248Predictio n of financial ng businessPredictio BARN of damak of damak of al (2020)State perfitability index, capitalForecasti ng businessNeural s in r probabili stic s in s in patrem patrem discrim inant analysis s in patrem s in patrem or s al (1998)Viller et s al. (1998)IProbabili s al (1998)no r rPredictio n for mormali gas s al (1998)PNN, r r122 r r r oli and potenti r <th></th> <th></th> <th>Learning</th> <th></th> <th>al</th> <th></th> <th></th> <th></th> <th></th> <th></th>			Learning		al					
Quantiza tionGuantiza 583 bankrup 			-							
ion ion 583 bankrup (firms bankrup (firms ion ion ion value Predictin g Fuzzy analytic Financi al ratios of 88 Financi al ratios of 88 Possible to explain the causes of inefficiency Possible to explain the causes of inefficiency RMSE = Wanke et 5 ASEAN precision NN banks 2010 to Possible to explain the inefficiency RMSE = Predictio n of financial State BNN Bank of instacts State BNN Predictio nof instacts Possible to explain the instacts - Forecasti nal Forecasti insolvene State bisnicss BNN Possible to explain the insolvene - Viller et 7 Insolvene Standar Possible to explain the insolvene - - Neural BPNN inant inant sin PNN compan is - - - Neural BPNN, extrema - - - Model Yang et 8 In (1998) n - - - Bankrupt Yang et 8 Bankrupt normali ges olvent inform 1984 to solvent US Neural BPNN, solvent US Neural Fisher discriminan inant inant Network Predictio infirms in ant - - - - Neural BPNN, tormpan										
Image: second										
Image: second			tion							
Wanke et 5Predictin g performa nce in ASEAN NFuzzy stasion banksFinanci al ratios analytic tion of Southea hierarc southea hierarc hierarc banksPoulon southea to nof state Bank of Bank of to 2011Possible to explain the causes of inefficiencyRMSE = 0.0248Wanke et 5al. (2016) banksPredictio in of financial distressState Bank of Bank of to al (2011)State Bank of Bank of to al (2012)Predictio rediction and ying to al (2012)RMSE = 0.0248Willer et 7al. (2020)Standar analysis si sin s in s in Bankrupt cy Prediction nor al (2020)Standar sinant analysis s, sinant analysis sinant al. (1998)Standar analysis sinant analysis sinant analysis sinant al. (1998)Standar analysis sinant analysis sinant analysis sinant al. (1998)Standar analysis sinant analysis sinant analysis sinant analysis sinant al. (1998)PNN, atterns compan analysis power solvent US firms, 716 al. (1998)PNN sinant analysis sinant analysis power solvent US firms, from solvent US firms, from solvent uf to an al 195PNN solvent power solvent firms and 195PNN solvent solvent firms and 195PNN solvent solvent firms solvent firms and 195PNN solvent solvent firms solvent firms and 195PNN solvent solvent firms solvent firms solvent firms and 195PNN <br< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></br<>										
Name Predictin Fuzzy analytic Associa tion of stassocia Possible to explain the causes of inefficiency Possible to explain the causes of inefficiency RMSE = 0.0248 Wanke et ASEAN process NN banks 2010 to Possible to explain the causes of inefficiency RMSE = 0.0248 5 al. (2016) banks NN banks 2010 to Possible to explain the causes of inefficiency RMSE = 0.0248 6 (2011) financial nof nof Bank of Banks 2001 – 2010 Z score variables - - 7 al. (2020) y d NN - - - 91% Accuracy Accuracy Dynamic 8 al. (2020) y d NN - - - Model 7 al. (2020) y d NN - - - Model 8 al. (2020) y d NN - - - Model 9 row s. - - - Model - 8 al. (1998) n cc - <td></td>										
Normal g performa nce in performa nce in 5 Predictin performa hierarc 5 Fuzzy stasia stonof biarac stonof stasia biarac stonof stasiaPolicy stasia 2010 to State BanksPolicy stasia 2010 to CAMELS ratiosPossible to explain the causes of inefficiency using NNRMSE = 0.02485al. (2016)banksNNbank2013CAMELS ratiosPossible to explain the causes of inefficiencyRMSE = 0.02486(2011)Predictio financial distressBPNNIndia2001 – 2010Z score variables7al. (2020)yd NN91% hournessFisher discrim inant inant inant inant7al. (2020)yd NNModel7al. (2020)yd NNModel7al. (2020)yd NNModel8al. (1998)ncompany index, capital9probabili stic sti										
Image: series Predictin Fuzzy Associa Prediction										
				Б						
performa nce in 5hierarc in st Asian processSouthea st Asian processSouthea st Asian processSouthea st Asian processPerforma bankhierarc st Asian processRMSE = 0.02485al. (2016)banksNNbank2010 to bankCAMELS ratiosusing NN-0.0248Predictio 6n of financial distressBPNNIndia2001 – 2010Z score variablesForecasti ng businessBPNNIndia2001 – 2010Z score variablesViller et r al. (2020)Standar unsivencStandar stick7al. (2020)yd NNModel91% Accuracy index, capital structure-Model7al. (2020)yd NNModelModel8r al. (1998)r normali zed.r industry1984 to industryNet cash flow to total assets, TD/TA, CL/TD, patternFisher discriminant analysis, PNN otal assets, TD/TA, CL/TD, pattern-on,8al. (1998)nzed.Defaulte d and from solvent-Net cash flow to total assets, TD/TA, CL/TD, pattern-on,8al. (1998)nzed.Defaulte d and from solvent <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>D 111</td> <td></td> <td></td>								D 111		
Warke etnce in h My al. (2016)hy bankst Asian Nations2010 to 2013causes of inefficiency using NNRMSE = 0.0248Predictio n of 6Predictio n of distressPredictio Bank of locationState Bank of lo										
SWarke et al. (2010)ASEAN banksNN banks2010 to 2013CAMELS ratiosinefficiency using NNRMSE = 0.0248Pradhan 60State Bank of 1State Bank of 1State Bank of 1State Bank of 1State Bank of 1NN <td></td>										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		XX7 1 .				2010				DIGE
Pradhan Predictio financial distress State Bank of India State Bank of India State Bank of 2001 - 2010 Z score variables - - 6 (2011) distress BPNN India 2001 - 2010 Z score variables - - 8 Forecasti ng business ng business Fisher discrim inant - - - - - 7 al. (2020) y d NN - - - - Model 8 Yang et al. (1998) Probabili n analysi scic s, Network PNN, PNN, is U.S. Prodictio 122 normali gas Net cash flow to industry Fisher discriminant analysis, PNN Fisher discriminant analysis, PNN 8 I.(1998) n Zed. Defaulte d and from solvent US 1984 to industry Net cash flow to industry BP NN, Probabilisic 8 al.(1998) n Zed. Defaulte d and from solvent US Fisher - - 9 Bankrupt cy Predictio E Defaulte d and from solvent US Fisher - - -	_							•		
Pradhan (2011)n of financial distressState Bank of IndiaState Bank of 2001 - 2010Z score variables1Forecasti ng businessng7al. (2020)Yd NNModel91% Accuracy Dynamic structure-Model7al. (2020)yd NNModel91% Accuracy Dynamic structureModel7al. (2020)yd NNModel8al. (2020)yd NNModel91%companic discrim nant sinProbabili analysis sinBPNN, PNNModel8al. (1998)nzed.industry gas predictio normali gas1984 toNet cash flow to total assets, TD/TA, CL/TD, PNNPNN probabilisic PNN-on,8al. (1998)nzed.Default d and from solvent USDefault d and from solvent USDefault d and from solvent USFisher total assets, total assets, total assets, pattern-on,9Default d and from solvent USDefault d and from solvent ulson,9Bankrupt row rowfrom solvent from and 195Default from solvent- <td>5</td> <td>al. (2016)</td> <td></td> <td>NN</td> <td>bank</td> <td>2013</td> <td>CAMELS ratios</td> <td>using NN</td> <td>-</td> <td>0.0248</td>	5	al. (2016)		NN	bank	2013	CAMELS ratios	using NN	-	0.0248
6 (2011) distress BPNN India 2001 - 2010 Z score variables - - - ng ng business ng physiness - - 91% Willer et insolvenc Standar - - - Model 7 al. (2020) y d NN - - - Model Probabili Fisher - - - Model - - Probabili snant - - - - Model - Neural BPNN, - - - - Model - Stic s, - - - - Model - Neural BPNN, - - - - Model - Stic s, - - - - - Model - stic s, - - - - - - - Netral BPNN, Nor 122										
Forecasti ng business insolvencForecasti ng business insolvencForecasti ng business91% Accuracy Dynamic7al. (2020)yd NNstructureModel7al. (2020)yd NNstructureModel8al. (2020)yd NNModelStructureModel91% (Accuracy DynamicFisher discrim inant stics,Model91% (Accuracy DynamicFisher discrim inant analysisModel-91% (Accuracy DynamicFisher discrim inant inant sticModel91% (Accuracy DynamicFisher discriminant analysis, patternModel91% (Accuracy (C200)BPNN, patterns oil and patternModel8al. (1998)nzed.industry isolvent US1989etcBPNN, pattern-on,8al. (1998)nzed.Defaulte d and from solvent USon,-on,9Bankrupt cy Predictio n forFirms, re										
ng businessng busines	6	(2011)		BPNN	India	2001 - 2010	Z score variables	-	-	-
Willer et al. (2020)business insolvencStandar StandarProfitability index, capital structureProfitability index, capital structureAccuracy Dynamic7al. (2020)yd NNModel7al. (2020)yd NNModel81Probabili sticanalysi sticModel9Probabili sticanalysi sticModel9Probabili sticanalysi sticModel9Neural sticBPNN, NetworkPNN122 issinPNN9Probabili sticanalysi s inPNNcompan issinNet cash flow to total assets, TD/TA, CL/TD, PNNBP NN, ProbabilisticS7% correct correct8al. (1998)nzed.Defaulte d and from solvent US firms, 716 solvent US-Defaulte d and 1959Bankrupt rpredictio n for-Defaulte firms, 716 solvent uls9Bankrupt rpredictio n for9Bankrupt rpredictio n for9Bankrupt rpredictio <br< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></br<>										
Willer et al. (2020)insolvenc yStandar d NNindex -index, capital structureJohn -Dynamic Model7al. (2020)yd NNstructureModel7al. (2020)yd NNstructureModel8Probabili sticanalysi stics, s, NetworkPNN, PNN, 122122 sompanFischer discriminant analysis, s in PNNFischer discriminant analysis, s in patternsFisher discriminant analysis, s in patternsFisher discriminant analysis, potential is und patternsFisher discriminant analysis, potential s in patternsFisher discriminant analysis, potential is und patternsFisher discriminant analysis, potential is und patternsFisher discriminant analysis, potential is und patternsFisher discriminant analysis, potential is und patternsFisher discriminant analysis, potential is und is und patternsFisher discriminant analysis, potential total assets, patternProbabilistic probabilistic patternCorrect classificati on,8al. (1998)nzed.industry diad from solvent USPittern-on9Bankrupt cy Predictio n for n forfirms, frims, fride solvent ud 195Fisher solvent ud 195Fisher solvent ud 195Fisher solvent ud 195Fisher solvent ud 195 <td></td>										
7 al. (2020) y d NN - - structure - - Model 8 al. (2020) y d NN - - structure - - Model 9 Probabili stic s, - - structure - - Model 9 Probabili stic s, - - - Fischer - - - Model 9 Pobabili stic s, - - - Fischer - - - - Model 9 Netural BPNN, 122 - - - - 13035, Fisher 9 Network PNN, 122 - Net cash flow to BP NN, 1303, - - - 14039, - - - 14039, - - 1403, - - - - 14039, - - - 14039, - - - - - - - - - - <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
Fisher discrim inantFisher discrim inantFisher discrim inantProbabili stics, Neural BPNN, 			insolvenc				-			
8Image: star in the star in t	7	al. (2020)	У		-	-	structure	-	-	Model
kProbabili sicinant analysi s, Neural Networkinant analysi s, Neuralinant analysi s, Neural NetworkBPNN, PNN, 122 123 123 124										
kProbabili sticanalysi sticFischer discriminant analysis,-Fisher discriminant analysis,NeuralBPNN, NetworkPNN, PNN122 compan Bankrupt-Net cash flow to total assets,PNN, Probabilistic-Fisher discriminan normalized>8al. (1998)nzed.industry1989etcProbabilistic patternscorrect classificati patterns8al. (1998)nzed.industry1989etcpattern-on,8al. (1998)nzed.industry1989etcpattern-on,9Bankrupt cy predictionzed.industry1989etcpattern-on,9Bankrupt cy cy cy predictionzed.firms, firms, firms and 195on,-on,										
stics,s,s,s,s,NeuralBPNN,122networkPNN122NetworkPNN122normalized>normalized>Bankruptwithouties U.S.Net cash flow toBP NN,87%Cypatternsoil andtotal assets,ProbabilisticcorrectYang etPredictionormaligas1984 toTD/TA, CL/TD,NN without aclassificati8al. (1998)nzed.industry1989etcpattern-on,9Defaulted andfrms,frms,frms,solventsolventsolventsolventsolventCygashkruptfirms,firms,firms,and 195solventsolventsolventsolventsolventsolventsolventRankruptforand 195solventsolventsolventsolventsolventsolventsolventsolventsolventRankruptforand 195solventsolventsolventsolventsolventsolventsolventsolventRankruptforsolventsolventsolventsolventsolventsolventsolventsolventRankruptforsolventsolventsolventsolventsolventsolventsolventsolventsolventRankruptforsolventsolventsolventsolventsolventsolventsolventsolven										
Neural Network s inBPNN, PNN122 compan ies U.S.Net cash flow to total assets, TD/TA, CL/TD,analysis, PNNFisher discriminan t analysis = 87%Yang et 8Predictio normali normalinormali gas1984 toNet cash flow to total assets, TD/TA, CL/TD, etcBP NN, Probabilisticcorrect classificati on,8al. (1998)nzed.industry industry1989etcpattern-9befaulte d and from solvent Cy Predictio n for n forDefaulte d and 195solvent firms, and 195solvent firms, firms, and 195solvent firms, firms, and 195solvent firms, firms, firms, firms, firms, firms, firms, and 195solvent firms, <td></td> <td></td> <td></td> <td>analysi</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				analysi						
Network s in BankruptPNN, PNN 										
s in Bankrupt (y)PNN without ies U.S.compan ies U.S.Net cash flow to total assets, TD/TA, CL/TD, etcnormalized> BP NN, Probabilistic NN without a patternt analysis = 87% correct classificati on,8al. (1998)nzed.industry1989etcBP NN, Probabilistic NN without a etc-on,8al. (1998)nzed.industry1989etcpattern-on,9al. (1998)nzed.industry1989etcpattern-on,9al. (1998)nzed.industry1989etcpattern-on,9al. (1998)nzed.industry1989etcpattern-on,9befaulte d and from solvent USfirms, 716 solvent firms and 195on,										
8Bankrupt cy Predictio nwithout ies U.S. oil and gasNet cash flow to total assets, TD/TA, CL/TD, etcBP NN, Probabilistic NN without a pattern87% correct classificati on,8al. (1998)nzed.industry1989total assets, TD/TA, CL/TD, etcProbabilistic NN without a pattern87% correct classificati on,8al. (1998)nzed.industry industry1989etc0n,9befaulte d and from solvent US Firms, n for n forsolvent firms and 19587% total assets, TD/TA, CL/TD,9nzed.industry19890n,					122					
vang et cy patterns oil and total assets, Probabilistic correct classificati 8 al. (1998) n zed. industry 1989 total assets, TD/TA, CL/TD, NN without a classificati classificati 8 al. (1998) n zed. industry 1989 etc n - on, 8 al. (1998) n Zed. Defaulte d and etc pattern - on, 9 r r Defaulte d and from solvent solvent r <			s in							
Yang et Predictio normali gas 1984 to TD/TA, CL/TD, NN without a classificati 8 al. (1998) n zed. industry 1989 etc pattern - on, 8 al. (1998) n Defaulte d and from solvent us solvent us no			Bankrupt	without						87%
8 al. (1998) n zed. industry 1989 etc pattern - on, 8 al. (1998) n zed. Defaulte dand - on, - on, 9 and from solvent US - </td <td></td> <td></td> <td></td> <td></td> <td>oil and</td> <td></td> <td></td> <td></td> <td></td> <td></td>					oil and					
Defaulte Defaulte d and from solvent US Bankrupt firms, cy solvent Predictio firms n for and 195			Predictio				TD/TA, CL/TD,	NN without a		classificati
Image: second	8	al. (1998)	n	zed.	industry	1989	etc	pattern	-	on,
Bankrupt from cy 716 Predictio firms, n for and 195										
Bankrupt solvent Cy 716 Predictio firms, n for and 195										
Bankrupt US firms, cy Predictio n for n for and 195										
Bankrupt cy Predictio n for n for Bankrupt cy Predictio n for and 195										
Danktupt 716 cy solvent Predictio firms n for and 195										
cy solvent Predictio firms n for and 195			-							
Predictio firms n for and 195										
n for and 195										
		Atiya	Credit	Standar	defaulted		Merton's asset-			Correct rate
9 (2001) Risk d NN firm - based model = 85.50%	9	· /			firm	-	based model	-	-	= 85.50%

Cross validation

Other Financial Applications:

Standard NN

Apart from the major topics of research, researchers have found NN is efficient to detect fraudulent reporting (Koskivaara & Back, 2007; Omar et al. 2017) and project portfolio management (Costantino et al., 2015).

Optimized NN –

A fuzzy analytical model is used for creating a financial information system (Wang et al., 2020).

A self-organization map algorithm, an unsupervised learning NN that produces a lowdimensional, discretized representation of the input space of the training samples, is called a map. SOM is used to analyze the integration of EU capital markets (Horobet 2014), differences in world economies (Cimpoeru 2015).

Hybrid NN -

NN with *the Ohlson model* is used to predict operating performance (Ying-Hua & Shih-Chin, 2013).

CONCLUSION

A descriptive systematic review was conducted to find the application of neural networks in financial research. The study found a keen research interest to use NN for predicting financial data. This is obvious from the statistic that about 53% of the collected research studies applied NN in investment prediction. Credit evaluation and financial distress topics contribute to 20% and 17% of each of the collected papers. There are very few works (10%) found on other financial aspects.

The following are the reflections of the review. First, it is observed that the researchers have used arbitrary data partition and architecture selection in all the research works. Besides, the performance or evaluation metrics widely differ among the collected research studies, giving less scope for comparing the accuracy of an NN architecture in a particular subtopic. Hence, in this study, a meta-analytic comparison to generalize the NN architectures and formalizing a theory to choose a suitable NN method under a topic has serious limitations.

Second, there are few studies (Neves & Vieira, 2006; Qi & Zhao, 2011) that have performed the cross-validation in NN models. Cross-validation increases efficiency in using financial data as every observation is used for both training and testing which results in a more accurate estimate of out-of-sample prediction. Further, overfitting and underfitting of data will be managed efficiently through cross-validation.

Third, unlike prediction, in the research studies of classifying financial data, there is a scope for a meta-analysis based on generalizing Area Under Curve (AUC) that help to estimate the accuracy of classification on a particular topic. Further, the study observed NN architectures including domain-specific knowledge performs with more accuracy. Hence, more domain-based Hybrid NN architectures can be trained.

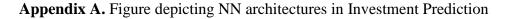
Besides, the review has the following limitations. The descriptive systematic review has examined only the research papers published and available under the EBSCO database. Consequently, the works of the literature review are prone to publication bias, which occurs with publishing only statistically significant results. Beyond, the research works in conference proceedings and working papers are not reviewed. Hence some sub-topics and main research topics might have been remaining uncovered. Systematically including more research papers from other sources will improve the chance of a meta-analysis of NN in financial research. Since meta-analysis on machine learning by Krittanawong et al. (2020) and Roelofs et al. (2019) are the only works available, that too in the medical domain, a meta-analysis of NN architectures in financial research will be a significant contribution to the existing financial and NN literature.

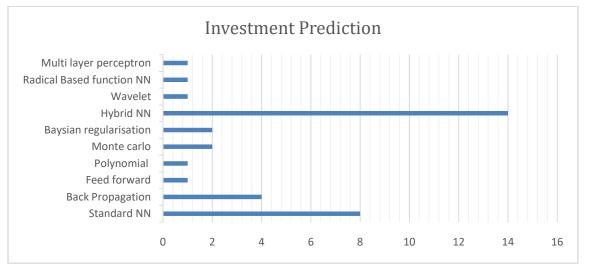
REFERENCES

- Altman, E., Marco, G., & Varetto, F. (1994). Corporate Distress Diagnosis: Comparisons Using Linear Discriminant Analysis and Neural Networks (the Italian Experience). *Journal of Banking and Finance*, 18(3), 505-529.
- Aiqun, W., Zicong, H., Yilin, W., Kolivand, H., Balas, V. E., Paul, A., & Ramachandran, V. (2020). Risk assessment of logistics finance enterprises based on BP neural network and fuzzy mathematical model. *Journal of Intelligent & Fuzzy Systems*, 39(4), 5915–5925. https://doi.org/10.3233/JIFS-189066
- Atiya, A.F. (2001). Bankruptcy prediction for credit risk using neural networks: A survey and new results, *IEEE Transactions on Neural Networks*, 12(1), 929-935.
- Baesens, B., Setiono, R., Mues, C., & Vanthienen, J. (2003). Using Neural Network Rule Extraction and Decision Tables for Credit-Risk Evaluation. *Management Science*, 49(3), 312–329. https://doi.org/10.1287/mnsc.49.3.312.12739
- Barr, D., & Mani. G. (1994). Using neural nets to manage investments, AI EXPERT, 34(3), 16–22.
- Barnes, B, M., & Lee, C, S, V. (2009). Effects of Macroeconomic and Firm-Specific Factors on Shareholder Wealth: Some Australian Evidence. *The Journal of wealth management*, 12 (1), 41-61. https://doi.org/10.3905/jwm.2009.12.1.041
- Brockett, P. L., Golden, L. L., Jang, J., & Yang, C. (2006). A Comparison of Neural Network, Statistical Methods, and Variable Choice for Life Insurers' Financial Distress Prediction. *Journal of Risk & Insurance*, 73(3), 397–419. https://doi.org/10.1111/j.1539-6975.2006.00181.x
- Brooks, C., Andreas, G, F., Hoepner, McMillan, D., Vivian, A, & Simen, C, W. (2019) Financial data science: the birth of a new financial research paradigm complementing econometrics? *The European Journal of Finance*, 25(17), 1627-1636, https://doi.org/10.1080/1351847X.2019.1662822
- Blynski, L., & Faseruk, A. (2006). Comparison of the effectiveness of option price forecasting: Black-Scholes vs. simple and hybrid neural networks. *Journal of Financial Management* & Analysis, 19(2), 46.
- Cavalcantea, R, C., Brailerio, C, R., Souza, L, V., Nobrega, P, J., Oliveria, L, A. (2016). Computational Intelligence and financial markets: A survey and future directions. *Expert systems with applications*, 55, 194 – 211. http://dx.doi.org/10.1016/j.eswa.2016.02.006
- Chang, P. C., Liu, C. H., Fan, C. Y., Lin, J. L., & Lai, C. M. (2009). An Ensemble of Neural Networks for Stock Trading Decision Making. In: Huang DS., Jo KH., Lee HH., Kang HJ., Bevilacqua V. (eds) Emerging Intelligent Computing Technology and Applications. With Aspects of Artificial Intelligence. ICIC 2009. Lecture Notes in Computer Science, 5755. https://doi.org/10.1007/978-3-642-04020-7_1

- Chen, F., & Sutcliffe, C. (2012). Pricing and Hedging Short Sterling Options Using Neural Networks. *Intelligent Systems in Accounting, Finance & Management, 19*(2), 128–149. https://doi.org/10.1002/isaf.336
- Chikolwa, B., & Chan, F. (2008). Determinants of Commercial Mortgage-Backed Securities Credit Ratings: Australian Evidence. *International Journal of Strategic Property Management*, 12(2), 69–94. https://doi.org/10.3846/1648-715X.2008.12.69-94
- Chiang, W.C., Urban, T. L. & Baldridge, G.W. (1996). A neural network approach to mutual fund net asset value forecasting, *Omega International journal of management science*, 24, 205–215.
- Cifter, A., Yilmazer, S., & Cifter, E. (2009). Analysis of sectoral credit default cycle dependency with wavelet networks: Evidence from Turkey. *Economic Modelling*, 26(6), 1382–1388. https://doi.org/10.1016/j.econmod.2009.07.014
- Cimpoeru, S. (2017). Using Self organizing maps for assessing systemic risk. Evidences form global economic crisis. *The Bucharest University of Economic Studies*. *http://www.ecocyb.ase.ro/nr20152/05%20-%20Cimpoeru_Smaranda.pdf*
- Coakley, J., & Brown. C. (2000). Artificial neural networks in accounting and finance: Modelling issues. *Intelligent Systems in Accounting Finance & Management*,9(2).
- Costnatino, F., Gravio, G, D., & Nonino, F. (2015). Project selection in project portfolio management: An artificial neural network model based on critical success factors. *International journal of project management*, 33, 1744 – 1754. http://dx.doi.org/10.1016/j.ijproman.2015.07.003
- Dunis, C. L., Laws, J., Middleton, P. W., & Karathanasopoulos, A. (2015). Trading and hedging the corn/ethanol crush spread using time-varying leverage and nonlinear models. *European Journal of Finance*, 21(4), 352–375. https://doi.org/10.1080/1351847X.2013.830140
- Fadlalla, A., & Lin, C. (2001) An analysis of the applications of neural networks in finance. *Interfaces*, *31*(4), 112–122.
- Feldman, K, & Kingdon, J. (1995). Neural networks and some applications to finance, *Applied Mathematical Finance*, 2(1), 17-42. https://doi.org/10.1080/1350486950000002
- Gençay, R., & Gibson, R. (2007). Model Risk for European-Style Stock Index Options. *IEEE Transactions on Neural Networks*, 18(1), 193–202. https://doi.org/10.1109/TNN.2006.883005
- Gradojevic, N., Gençay, R., & Kukolj, D. (2009). Option Pricing With Modular Neural Networks. *IEEE Transactions on Neural Networks*, 20(4), 626–637. https://doi.org/10.1109/TNN.2008.2011130

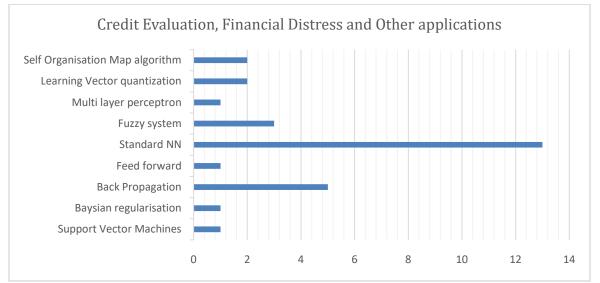
- Gupta, P., Chauhan, S. & Jaiswal, M.P. (2019). Classification of Smart City Research a Descriptive Literature Review and Future Research Agenda. *Information System Frontiers*, 21, 661–685. https://doi.org/10.1007/s10796-019-09911-3
- Gustafson, J., L. (2011). Moore's Law. In: Padua D. *Encyclopedia of Parallel Computing*. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09766-4_81
- Hutchison A.W, Lo A.W, & Poggio, T. (1994) A nonparametric approach to pricing and hedging derivative securities via learning networks. *The journal of Finance*, 49(3), 851-889.
- Hajek, P. (2011). Municipal credit rating modelling by neural networks. *Decision support* systems, 51 (1), 108 118. https://doi.org/10.1016/j.dss.2010.11.033
- Hariri, R. H., Fredericks, E.M. & Bowers, K. M. (2019). Uncertainty in big data analytics: survey, opportunities, and challenges. *Journal of Big Data*,6. https://doi.org/10.1186/s40537-019-0206-3.
- Haefke, C., & Helmenstein, C. (2002). Index forecasting and model selection. *International Journal of Intelligent Systems in Accounting Finance & Management*, 11(2), 119–135. https://doi.org/10.1002/isaf.214
- Horobet, A., Belascu, L., Ionita, I., & Serban Oprescu, A.-T. (2014). A Neural Networks Perspective on the Financial integration of European Capital Markets. *Economic Computation & Economic Cybernetics Studies & Research*, 48(1), 1–12
- Huang, G., Huang, G, B., Shiji, S., & Youa, K. (2014). Trends in extreme learning machines: A review. *Neural Networks*. 61, 34 45. http://dx.doi.org/10.1016/j.neunet.2014.10.001
- Huang, J., Chai, J. & Cho, S. (2020). Deep learning in finance and banking: A literature review and classification. *Frontiersof Business Research in China*, 14. https://doi.org/10.1186/s11782-020-00082-6
- Indro, D. C., Jiang, C. X., Patuwo, B. E., & Zhang, G. P. (1999). Predicting mutual fund performance using artificial neural networks. *Omega*, 27(3), 373-380. https://doi.org/10.1016/S0305-0483(98)00048-6
- Jan, M. N., & Ayub, U. (2019). Do the Fama and French Five-Factor Model Forecast Well Using Ann? Journal of Business Economics & Management, 20(1), 168–191. https://doi.org/10.3846/jbem.2019.8250
- Kaastra, I. & Boyd, M. (1996). Designing a Neural Network for Forecasting Financial and Economic Time Series. *Neurocomputing*, 10, 215-236. https://doi.org/10.1016/0925-2312(95)00039-9


- Karathanasopoulos, A., Dunis, C., & Khalil, S. (2016). Modeling, forecasting, and trading with a new sliding window approach: the crack spread example. *Quantitative Finance*, *16*(12), 1875–1886. https://doi.org/10.1080/14697688.2016.1211796
- Karunananthan, S., Maxwell, L, J., & Welch, V. (2020) Protocol: When and how to replicate systematic reviews. *Campbell Systematic Reviews*. 16. https://doi.org/10.1002/cl2.1087
- Krishnaswamy, C.R., Gilbert, E.W., & Pashley, M.M. (2000) Neural network applications in finance: A practical introduction. *Financial Practice and Education*, *10*(1), 75-84.
- Kriteenawong, C., Virk, H, H., Bangalore, S., Wang, Z., Johnson, W, K., Rachel. (2020). Machine learning prediction in cardiovascular diseases: a meta-analysis. *Scientific reports*, 10. https://doi.org/10.1038/s41598-020-72685-1
- Kohler, M., Krzyżak, A., & Todorovic, N. (2010). Pricing of High-Dimensional American Options by Neural Networks. *Mathematical Finance*, 20(3), 383–410. https://doi.org/10.1111/j.1467-9965.2010.00404.x
- Koskivaara, E., & Back, B. (2007). Artificial Neural Network Assistant (ANNA) for Continuous Auditing and Monitoring of Financial Data. *Journal of Emerging Technologies in Accounting*, 4, 29–45. https://doi.org/10.2308/jeta.2007.4.1.29
- Kim, K. (2004). Artificial neural networks with feature transformation based on domain knowledge for the prediction of stock index futures. *Intelligent Systems in Accounting*, *Finance & Management*, 12(3), 167–176. https://doi.org/10.1002/isaf.252
- Light, R.J., & Pillemer, D. B. (1984). Summing up: The science of reviewing research. Cambridge, MA: Harvard University Press.
- Lin, C.-T., & Yeh, H.-Y. (2009). Empirical of the Taiwan stock index option price forecasting model - applied artificial neural network. *Applied Economics*, 41(15), 1965–1972. https://doi.org/10.1080/00036840601131672
- Loterman, G., Brown, I., Martens, D., Mues, C., & Baesens, B. (2012). Benchmarking regression algorithms for loss given default modeling. *International Journal of Forecasting*, 28(1), 161–170. https://doi.org/10.1016/j.ijforecast.2011.01.006
- Loukeris, N., & Eleftheriadis, I. (2015). Further Higher Moments in Portfolio Selection and A Priori Detection of Bankruptcy, Under Multi-layer Perceptron Neural Networks, Hybrid Neuro-genetic MLPs, and the Voted Perceptron. *International Journal of Finance & Economics*, 20(4), 341–361. https://doi.org/10.1002/ijfe.1521
- LV, D., Wang, D., Li, M., & Xiang, Y. (2020). DNN models based on dimensionality reduction for stock trading. *Intelligent data analysis*, 24(1), 19-45. https://doi.org/10.3233/IDA-184403


- Manel, H. (2012). Prediction of Financial Distress for Tunisian Firms: A Comparative Study between Financial Analysis and Neuronal Analysis. *Business Intelligence Journal*, 5(2), 374–382.
- Moher, D., Liberati, A., Tetzlaff, J., Altman, D, G., & The PRISMA Group. (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. *PLoS Med.* 6(7). https://doi.org/10.1371/journal.pmed1000097
- Moreno, D., & Olmeda, I. (2007). Is the predictability of emerging and developed stock markets really exploitable? *European Journal of Operational Research*, 182(1), 436–454. https://doi.org/10.1016/j.ejor.2006.07.032
- Ngai, E. W. T., & Wat, F. K. T. (2002) A Literature Review and Classification of Electronic Commerce Research. *Information & Management*, *39*, 415-429.
- Neves, J. C., & Vieira, A. (2006). Improving bankruptcy prediction with Hidden Layer Learning Vector Quantization. *European Accounting Review*, 15(2), 253–271. https://doi.org/10.1080/09638180600555016
- Omar, N., Johari, Z, A., & Smith, M. (2017). Predicting fraudulent financial reporting using artificial neural network. *Journal of Financial Crime*, 24(2), 362–387. https://doi.org/10.1108/JFC-11-2015-0061
- Ozbey, F., & Paksoy, S. (2020). Estimation of the XU100 Index Return Volatility with the Integration of GARCH Family Models and ANN. *Business and economics research journal*, 11(2), 385 396.
- Petter, S., McLean, E. R. (2009). A meta-analytic assessment of the DeLone and McLean IS success model: An examination of IS success at the individual level. *Information Management*, 46(3), 159-166.
- Pradhan, R., Pathak, K. K., & Singh, V. P. (2011). Z Score Reveals Credit Capacity: A Case Study of SBI. *International Journal of Financial Management*, 1(3), 72–78.
- Qi, M., & Zhao, X. (2011). Comparison of modeling methods for Loss Given Default. *Journal* of banking and finance, 35(11). 2842-2855. https://doi.org/10.1016/j.jbankfin.2011.03.011
- Roelofs, R., Shankar, V., Recht, B., Fridovich-Keil, S., Hardt, M., Miller, J & Schmidt, L. (2019). A Meta-Analysis of Overfitting in Machine Learning. Advances in Neural Information Processing Systems 32 (Neur IPS 2019), 1-11. Retrieved from https://openreview.net/pdf/98fdb4bb89fd868a5dda9f827133eec6e11bb4fa.pdf
- Safer, A. M. (2002). The application of neural networks to predict abnormal stock returns using insider trading data. *Applied Stochastic Models in Business & Industry*, 18(4), 381–389. https://doi.org/10.1002/asmb.466

- Sapna, O., Botti, V., & Argente, E. (2003). Application of neural networks to stock prediction in "pool" companies. *Application of Artificial Intelligence* 17(7):661–673.
- Sariev, E., & Germano, G. (2020) Bayesian regularized artificial neural networks for the estimation of the probability of default. *Quantitative Finance*, 20(2), 311–328. https://doi.org/10.1080/14697688.2019.1633014
- Sermpinis, G., Laws, J., & Dunis, C. L. (2013). Modeling and trading the realized volatility of the FTSE100 futures with higher-order neural networks. *European Journal of Finance*, 19(3), 165–179. https://doi.org/10.1080/1351847X.2011.606990
- Shokraneh, F., & Adams, C. E. (2019). Study-based registers reduce waste in systematic reviewing: discussion and case report. *Systematic Reviews*, 8(1), 129.
- Sperckelsen, C., Mettenheim, H., & Breitner, M. H. (2014). Real-Time Pricing and Hedging of Options on Currency Futures with Artificial Neural Networks. *Journal of Forecasting*, 33(6), 419–432. https://doi.org/10.1002/for.2311
- Trinkle, B. S., & Baldwin, A. A. (2007). Interpretable credit model development via artificial neural networks. *Intelligent Systems in Accounting, Finance & Management*, 15(3/4), 123–147. https://doi.org/10.1002/isaf.289
- Vellido A., Lisboa, P. J., Vaughan, J. (1999). Neural networks in business: a survey of applications (1992–1998). *Expert Syst Appl.* 17(1), 51–70.
- Wie Zhang, A., Qing Cao, & Schniederjans, M. J. (2004). Neural Network Earnings Per Share Forecasting Models: A Comparative Analysis of Alternative Methods. *Decision Sciences*, 35(2), 205–237. https://doi.org/10.1111/j.00117315.2004.02674.x
- Wanke, P., Kalam Azad, M. A., Barros, C. P., & Hadi, V. A. (2016). Predicting performance in ASEAN banks: an integrated fuzzy MCDM-neural network approach. *Expert Systems*, 33(3), 213–229. https://doi.org/10.1111/exsy.12144
- Wang, A., Liu, Y., Isaeva, E., & Rocha, Á. (2020). Intelligent financial management of company based on neural network and fuzzy volatility evaluation. *Journal of Intelligent* & Fuzzy Systems, 38(6), 7215–7228. https://doi.org/10.3233/JIFS-179798
- Wei, K., Nakamori, Y., Wang, S., & Yu, L. (2007). Neural Networks in Finance and Economics Forecasting. *International Journal of Information Technology &Decision Making*, 6(1), 113-140. https://doi.org/10.1142/S021962200700237X
- Willer P.J., Giarola, V, A., Cardoso, C, A., & Pinheiro, N., T. (2020). Business Insolvency Forecasting Using Artificial Neural Networks. *Management and Development*, 17(2), 136–162. https://doi.org/10.25112/rgd.v17i2.1777

- Wong, B. K., & Selvi, Y. (1998). Neural network applications in finance: A review and analysis of literature (1990-1996). *Information and Management*, *34*(3), 129–139.
- Yang, Z. R., Platt, M. B., Platt, H. D (1999). Probabilistic neural networks in bankruptcy prediction. *Journal of Business Research*, 44(2), 67–74.
- Ying-Hua, C., & Shih-Chin, W. (2013). Integration of Evolutionary Computing and Equity Valuation Models to Forecast Stock Values Based on Data Mining. Asia Pacific Management Review, 18(1), 63–78. https://doi.org/10.6126/APMR.2013.18.1.04
- Zan, H., Chen, H., Hsu, C., Chen, W., & Wu, S. (2004). Credit rating analysis with support vector machines and neural networks: a market comparative study. *Decision Support Systems*, 37(4), 543–558. https://doi.org/10.1016/s0167-9236(03)00086-1
- Zapart, C. A. (2003). Beyond Black–Scholes: A Neural Networks-Based Approach to Options Pricing. *International Journal of Theoretical & Applied Finance*, 6(5), 469. https://doi.org/10.1142/S0219024903002006


APPENDICES

*Hybrid NN methods are developed by incorporating the financial theories (Black Scholes option pricing, Fama French five-factor model), advanced statistics (GARCH, PCA, LASSO, CART, PLR), advanced NN architectures (HONN, GPA, MLP), and domain-specific factors.

Appendix B. Figure depicting NN architectures in credit evaluation, financial distress, and other applications

*Support Vector Machine is a similar machine learning algorithm like NN.

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal. This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/)