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Abstract 

This paper tries to compare more accurate and efficient L1 norm regression algorithms. Other comparative 
studies are mentioned, and their conclusions are discussed. Many experiments have been performed to 
evaluate the comparative efficiency and accuracy of the selected algorithms. 
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1. Introduction 

     The objective of this paper is to compare some of the existing algorithms for the L1 norm regression 
with those proposed by Bidabad (1989a,b). Our point of view is to compare the accuracy and relative 
efficiencies of them. In this respect, accuracy of the solution of the algorithms is more important than the 
other criteria. By the term accuracy we mean, reaching the correct solution in a finite number of steps or 
iterations. By efficiency, we mean that the algorithm performs with a smaller amount of required storage 
and execution time to reach the accurate optimal solution. 
     Generally, the comparison of algorithms is not a straightforward task. As it is indicated by Dutter 
(1977), factors such as quality of computer codes and computing environment should be considered. In 
the case of the L1 norm algorithms, three specific factors of the number of observations, number of 
parameters, and the condition of data are more important. Kennedy and Gentle and Sposito (1977a,b), 
and Hoffman and Shier (1980a,b) describe methods for generating random test data with known L1 norm 
solution vectors. Gilsinn et al. (1977) discuss a general methodology for comparing the L1 norm 
algorithms. Kennedy and Gentle (1977) examine the rounding error of L1 norm regression and present 
two techniques for detecting inaccuracies of the computation (see also, Larson and Sameh (1980)). 
     Many authors have compared their own algorithms with those already proposed. Table 1 gives a 
summary of the characteristics of the algorithms proposed by different authors. It is important to note 
that since the computing environment and condition of data with respect to the distribution of the 
regression errors of the presented algorithms by table 1 are not the same, definitive conclusion and 
comparison should not be drawn from this table. 
     Armstrong and Frome (1976a) compare the iterative weighted least squares of Schlossmacher (1973) 
with Barrodale and Roberts (1973) algorithm. The result was high superiority of the latter. Anderson and 
Steiger (1980) compare the algorithms of Bloomfield and Steiger (1980), Bartels and Conn and Sinclair 
(1978) and Barrodale and Roberts (1973). It was concluded that as the number of observations n 
increases the BR locates in a different complexity class than BCS and BS. All algorithms are linear in the 
number of parameters m, and BS is less complex than BCS. Complexities of BS and BCS are linear in n. 
There is a slight tendency for all algorithms to work proportionately harder for even m than for odd m. 
BR and BS had the most difficulty with normal error distribution and the least difficulty with Pareto 
distribution with corresponding Pareto density parameter equal to 1.2. 
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Table 1. Summary of the characteristics of the existing algorithms. 

ref. Compared with m range n range Time/performance 
BCS  BR      2-8   201       roughly equal speed                  
AFK  BR      5-20  100-1500  30%-50% AFK is faster                

A    BR      1-11  15-203    nearly equal speed                   
BS   BR      2-6   100-1800  BS is faster for larger n            
W    AFK,AK  2-25  100-1000  W is faster for larger n & smaller m 

SS   BS      4-34  10-50     SS is faster for m near n            
AK S       2     50-500    AK is faster                         
JS Ak  2     10-250    JS is faster                         
n  ≡number of observations. 
m  ≡number of parameters. 

BCS≡Bartels,Conn,Sinclair (1978). 
BR ≡Barrodale,Roberts (1973,74). 

AK ≡Armstrong,Kung (1978). 
S  ≡Sadovski (1974). 

AFK≡Armstrong,Frome,Kung (1979). 
A  ≡Abdelmalek (1980a,b). 

BS ≡Bloomfield,Steiger (1980). 
W  ≡Wesolowsky (1981). 

JS ≡Josvanger,Sposito (1983). 
SS ≡Seneta,Steiger (1984). 

 
Gentle and Narula and Sposito (1987) perform a full comparison among some of the L1 norm 

algorithms.  They limited this comparison to the codes that are openly available for L1 norm linear 
regression of unconstrained form. Table 2 shows the required array storage and stopping constants of the 
corresponding algorithms.  
 
Table 2. The array storage requirement for selected algorithms. 
Program name  Ref.  required array storage    stopping constants                
L1       
         
         

BR   
     
     

3n+m(n+5)+4        
                   
                   

BIG=1.0E+75                        
TOLER=10**(-D+2/3)                 
D=No. of decimal digits of accuracy 

L1       
         

A    
     

6n+m(n+3m/2+15/2)  
                   

PREC=1.0E-6                        
ESP=1.0E-4                         

L1NORM   
         

AFK  
     

6n+m(n+m+5)        
                   

ACU=1.0E-6                         
BIG=1.0E+15                        

BLAD1    BS   4n+2m(n+2)         --------------------               
LONESL   
         

S    
     

4n                 
                   

PREC=1.0E-6                        
BIG=1.0E+19                        

SIMLP    
         

AK   
     

4n                 
                   

ACU=1.0E-6                         
BIG=1.0E+19                        

DESL1    JS   5n                 TOL=1.0E-6                         
See table 1 for abbreviations. 
Source: Gentle, Narula, Sposito (1987). 

 
     In their study, the problem consists of uniform (0,1) random values for X and normal (0,3) variates 
for the random error term. The value of the dependent variable y computed as the sum of the independent 
variables and error term. Summary of the results is shown in tables 3 and 4 for simple and multiple 
regressions, respectively. Values in the cells are the CPU time averages of 100 replications, and the values 
in the parentheses are corresponding maximum CPU time of the 100 replications. Gentle and Sposito and 
Narula (1988) also compare the algorithms for unconstrained L1 norm simple linear regression. This 
investigation is essentially an extraction of Gentle and Narula and Sposito (1987). The attained results are 
completely similar. 
     They concluded that the BS program performs quite well on smaller problems, but in larger cases, 
because of accumulated round-off error, it fails to produce correct answers. The Wesolowsky program 
was not usable and deleted in their study. Because of the superiority of AFK to BR and AK to S, which 
had been indicated in previous studies, BR and S algorithm did not enter in their study. 
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Table 3. The CPU time for a simple model. 
   n       AK        JS        A        AFK      BS     
  100     0.021     0.023     0.094    0.034    0.023   

         (0.03)    (0.04)    (0.21)   (0.06)   (0.04)   
  500     0.193     0.302     1.434    0.287    0.145   
         (0.38)    (0.61)    (3.13)   (0.49)   (0.26)   

 1000     0.544     0.971     4.775    0.784    0.422   
         (1.36)    (2.16)   (10.60)   (1.76)   (1.19)   
 5000     1.262     2.837   211.23*    1.614      +     

        (24.58)   (48.88)   (----)   (31.22)      +     
See table 1 for abbreviations. 
* Average of three runs. 
+ Failed to produce correct answers. 
Source: Gentle, Narula, Sposito (1987). 

 
Table 4. The CPU time for multiple model (m=5,15). 

   n    m        A         AFK  BS 
  100   5    0.331  (0.53)   0.149  (0.23)  0.114   (0.17)  
  100  15    1.976  (2.73)   1.313  (1.70)  0.933   (1.38)  

  500   5    3.686  (5.47)   1.120  (1.81)  0.829   (1.22)  
  500  15   17.876  (23.4)   7.808  (10.1)  7.294   (9.13)  
 1000   5   13.211  (18.3)   2.930  (4.38)       +  +        

 1000  15   49.866  (72.7)  17.901  (24.0)       +  +        
 5000   5  248.91*  (----)  34.311  (51.8)       +  +        
 5000  15  687.31*  (----) 140.321  (160.1)      +  +        
See table 1 for abbreviations. 
* Average of three runs. 
+ Failed to produce correct answers. 
Source: Gentle, Narula, Sposito (1987). 

 
     By considering all aspects, they concluded that AFK seems to be the best. 
 
2. Design of experiments 

     Performance of every algorithm in any specific computing environment is different and thus makes the 
absolute comparison of algorithms very difficult, especially if the system uses, virtual or real storage, a 
cache or any array processor or mathematical co-processor and etc. As it was discussed by Bidabad 
(1989a,b), many algorithms exist for L1 norm regression with corresponding computer program and 
comparison of all of them is very costly. In order to reduce the number of experiments, we rely on the 
experience of previous researchers which were discussed above. However, the experiments are divided into 
two general categories of simple and multiple linear L1 norm regressions. 
     Despite the coded computer programs, computing environment, numbers of observations and 
parameters of the model and "condition" of data are the major sources of comparisons for performances 
of algorithms. Thus different sizes problems are to be tested in this section.       
     To judge the superiority of algorithms, there are many criteria. Accuracy and efficiency are basic ones. 
In the former, we are concerned with obtaining the true results in different samples, and in the latter, the 
computation time and storage requirement of the algorithms are compared. 
     To perform the experiments, once uniform random values selected for ßj in the following model, 
                   m 

          yi =    jxij + ui         i=1,...,n                                                                                            (1) 
                  j=1 
Random values generated for xij and ui with five specifications of distributions. Uniform and normal 
random generators (given by Mojarrad (1977)) used to generate three uniforms and two normal sets of 
random data for each experiment. Generated uniform random deviates belong to the [-10,10], [-100,100] 
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and [-1000,1000] intervals. Normal deviates have zero mean with 100 and 1000 variances. Values of yi 
computed for ßj, xij, and ui which had been generated as explained above. Values of 20, 50, 100, 500, 
1000, 2000, 5000 and 10000 were used for the number of observations n and values of 2, 3, 4, 5, 7 and 
10 selected for the number of parameters m. 
     Hence, for all of the five specifications of distribution of ui, and for all m and n, replication is done for 
each of the selected algorithms. Average and range of these five replications are reported for each m and n 
for each algorithm. In the case of simple regression number of replications is ten than five. 
     The programs were all compiled by Fortran IV, VS compiler, 1.3.0 level (May 1983) and 77 
LANGLVL with 03 optimization level to reduce the coding inefficiencies. The programs were run on 
BASF 7.68 (MVS) computer. Since this machine is a multitasking system, swapping process should affect 
the execution time. When the system is running for more than one job, this effect can not be measured 
and removed completely. In order to filter the swapping time, Service Request Block (SRB) time has been 
reduced from the total Central Processing Unit (CPU) time. However, when the system is busy, this may 
not exhaust all the swapping times. It has been tried to run all comparable algorithms simultaneously, and 
also in one class of input with enough initiators and the same priority level to cause similar situations for 
all comparable submitted jobs. The pre-execution times of compilation and linkage-editor are excluded 
from all tested programs. 
 
3. Comparison of the simple regression L1 norm algorithms 

     In this study, comparisons are limited to the algorithm 2 of Bidabad (1989a,b) and that proposed by 
Josvanger and Sposito (1983). Gentle and Narula and Sposito (1987) and Gentle and Sposito and Narula 
(1988) introduced the latter as the most efficient algorithm for simple linear L1 norm regression. 
 
Table 5. The array storage requirement for simple model selected algorithms 
Algorithm Program name Storage requirement Stopping constant 
Js DESL1 5n TOL = 1.0E-6 

B (Alg.2) BL1S 5n ------------ 
Js       ≡ Josvanger and Sposito (1983). 
B(Alg.2) ≡ Bidabad (1989a,b) Algorithm 2. 

n        ≡ Number of observations. 

 
     The amount of array storage requirement for these two programs is shown in Table 5. This table may 
be compared with table 2 for other algorithms. None of the programs destroys the input data. Both 
programs have been coded in single precision.  
     Table 6 shows the results of the experiments for simple linear L1 norm regression. The values reported 
in the cells of the table are the averages of ten replications CPU times in seconds with different random 
samples. The values in the parentheses are the corresponding minimum and maximum CPU times of the 
ten runs. Both algorithms converged and gave accurate results for all of the experiments. 
     As it is clear from table 6 in small samples, the computation times are not very different, though 
algorithm 2 is faster. In medium samples, this difference becomes significant, and in larger samples, 
algorithm 2 becomes strongly superior to that of Josvanger and Sposito (1983).  Thus it can be concluded 
that algorithm 2 performs better than the other algorithms and may be used for applied work to achieve 
more efficiency. 
 
Table 6. CPU times for simple model 

 L1 norm selected algorithms 

   n              JS             B(Alg.2)      
    20           0.096             0.094       
              (0.09,0.10)       (0.09,0.10)    

    50           0.109             0.106       
              (0.10,0.11)       (0.10,0.11)    
   100           0.141             0.132       

              (0.13,0.16)       (0.12,0.14)    



www.cribfb.com/journal/index.php/BJMSR       Bangladesh Journal of Multidisciplinary Scientific Research    Vol. 1, No. 1; 2019 

 

35 
 

   500           0.469             0.360       

              (0.35,0.59)       (0.33,0.38)    
  1000           0.997             0.645       
              (0.66,1.31)       (0.61,0.69)    

  2000           2.770             1.194       
              (1.36,4.27)       (0.98,1.28)    
  5000          11.554             2.848       

              (4.58,18.91)      (2.71,3.15)    
 10000          42.406             5.823       

              (9.67,60.88)      (5.16,6.87)    
See table 5 for abbreviations. 

 
4. Comparison of the multiple regression L1 norm algorithms 

     To compare algorithm 4 of Bidabad (1989a,b) with other algorithms, experiments have been limited 
to three algorithms which are more accurate and efficient among the others. These are algorithms of 
Barrodale and Roberts (1973,74) (BR), Bloomfield and Steiger (1980) (BS), Armstrong and Frome and 
Kung (1979) (AFK). Although, BS and AFK algorithms are faster than BR, the reason to select BR 
algorithm was that the other two algorithms failed to produce correct answers for larger samples (see, 
Gentle and Narula and Sposito (1987)). 
     The amount of array storage requirement for these programs is indicated in table 7. This table may be 
compared with table 2 for other algorithms. All programs have been coded in single precision. None of 
the programs destroys input data. 
 
Table 7. The array storage requirement for multiple model selected algorithms 
Algorithm Program name Storage requirement Stopping constant 

AFK AFKL1 6n+m(n+3m/2+15/2) ACU = 1.0E-6   
BIG = 1.0E+15 

BR L1BAR 3n+m(n+5)+4 BIG = 1.0E+75 

BS BLOD1 4n+m(2n+4) ------------- 
B (Alg.4) BL1 2n+m(3n+m+2)-2 ------------- 
AFK      ≡ Armstrong and Frome and Kung (1970). 

BR       ≡ Barrodale and Roberts (1973,74). 
BS       ≡ Bloomfield and Steiger (1980). 

B(Alg.4) ≡ Bidabad (1989a,b) Algorithm 4. 

n        ≡ Number of observations. 
m        ≡ Number of parameters. 

 
     Tables 8 through 12 report the averages of five runs CPU times for different sample sizes and 
parameters. The values in the parentheses are minimum and maximum CPU times of replications. For the 
three parameters model, as it can be seen from table 8, the algorithm 4 is superior to other algorithms. In 
this case, the BS, AFK, and BR possess less efficiency, respectively. When the sample size is small, the 
difference is not large. In medium sample sizes, this difference is going to increase. In larger size 
experiments, algorithm 4 and BS have a small difference, but BR and AFK are far from them. In all cases, 
algorithm 4 is faster than the other algorithms.  
 
Table 8. CPU times for multiple model (m=3) selected algorithms 
  n     B(Alg.4)         BR            BS           AFK       

   20     0.098         0.110         0.104         0.112     
       (0.09,0.10)   (0.11,0.11)  (0.10,0.11)   (0.11,0.12)   

   50     0.144         0.148         0.146         0.146     
       (0.13,0.16)   (0.14,0.16)  (0.13,0.16)   (0.14,0.15)   
  100     0.182         0.216         0.194         0.214     

       (0.18,0.19)   (0.20,0.23)  (0.19,0.20)   (0.20,0.23)   
  500     0.698         1.116         0.810         0.986     
       (0.63,0.74)   (1.07,1.17)  (0.63,1.00)   (0.85,1.11)   

 1000     1.390         2.420         1.662         2.180     
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       (1.27,1.53)   (2.16,2.76)  (1.37,2.01)   (2.01,2.36)   

 2000     2.812         5.884         2.932         4.800     
       (2.34,2.99)   (4.98,6.63)  (2.81,3.18)   (4.30,5.09)   
 5000     7.456        25.038         7.520        20.172     

       (6.82,9.03)  (22.33,27.54) (6.16,10.12() (16.57,22.33) 
10000    14.330        80.008        15.434        59.634     
      (12.45,16.61) (73.16,87.03) (12.88,18.12) (55.60,65.80) 
See table 7 for abbreviations. 

 
     In the case of four parameters model as shown by table 9, though BS algorithm is competing with 
algorithm 4, this ordering remains unchanged, and algorithm 4 is again most efficient. The ranking of the 
selected algorithms is similar to that of three parameters experiments in all cases of small, medium, and 
larger sample sizes. 
 
Table 9. CPU times for multiple model (m=4) selected algorithms 
  n     B(Alg.4)         BR            BS           AFK       

   20     0.112         0.116           0.116         0.116       
       (0.11,0.12)   (0.11,0.12)    (0.11,0.12)   (0.11,0.12)     
   50     0.156         0.168           0.160         0.160       

       (0.15,0.16)   (0.16,0.19)    (0.15,0.17)   (0.16,0.16)     
  100     0.284         0.286           0.286         0.286       

       (0.26,0.32)   (0.26,0.30)    (0.27,0.30)   (0.26,0.30)     
  500     1.098         1.596           1.260         1.394       
       (0.85,1.44)   (1.23,1.77)    (0.92,1.58)   (1.17,1.71)     

 1000     2.194         4.016           2.200         3.022       
       (2.03,2.45)   (3.35,5.05)    (0.64,3.28)   (2.73,3.21)     
 2000     4.650        10.636           5.430         7.774       

       (3.92,5.05)   (9.44,11.86)   (4.54,6.15)   (7.25,8.16)     
 5000    12.852        41.282          12.938        32.110       
      (10.00,15.23) (32.40,47.86)   (11.62,14.04) (29.55,33.17)   

10000    27.720       119.152          27.864       101.472       
      (22.93,39.14) (107.14,129.70) (23.94,32.10) (100.31,103.15) 
See table 7 for abbreviations. 
 

     When the number of parameters increased to five, BS algorithm failed to produce correct answers for 
sample sizes of 2000 and more. Gentle and Narula and Sposito (1987) also referred to the failure of BS 
algorithm for sample sizes of 1000 and greater for five and more parameters models and for a sample size 
of 5000 when the number of parameters is two. With reference to table 10, the efficiency of algorithm 4 
to others with respect to the failure of BS is clear. The algorithms of AFK and BR are in the next 
positions, respectively. For smaller sample size, BR, BS, and AFK algorithms are competing, but the 
differences are very small. In the larger sample sizes, algorithm 4 becomes strictly superior to other 
algorithms. 
 
Table 10. CPU times for multiple model (m=5) selected algorithms 
  n     B(Alg.4)         BR            BS           AFK       

   20     0.138         0.124           0.124        0.124      
       (0.13,0.15)   (0.12,0.13)    (0.12,0.14)  (0.11,0.13)    
   50     0.208         0.240           0.204        0.188      

       (0.18,0.24)   (0.22,0.26)    (0.20,0.21)  (0.18,0.20)    
  100     0.348         0.380           0.404        0.338      
       (0.33,0.37)   (0.34,0.42)    (0.36,0.46)  (0.32,0.36)    

  500     2.024         2.498           1.754        1.684      
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       (1.57,2.40)   (2.29,2.68)    (1.34,2.01)  (1.57,1.78)    

 1000     3.702         5.684           3.364        3.876      
       (3.19,4.45)   (4.86,6.28)    (2.93,3.71)  (3.67,4.13)    
 2000     8.770        15.500            +           9.120      

       (7.51,9.41)  (13.04,16.58)        +       (7.91,9.93)    
 5000    24.418        66.394            +          36.600      
      (20.15,27.96) (59.93,71.90)        +       (33.95,38.67)  

10000    53.924       244.072            +         108.406      
      (38.35,64.90) (217.81,270.06)      +       (99.65,119.75) 
+ Failed to compute correct answers. 
See table 7 for abbreviations. 

 
Table 11. CPU times for multiple model (m=7) selected algorithms 

  n     B(Alg.4)         BR            BS           AFK       
   20     0.160           0.164           0.156        0.160       
       (0.16,0.16)     (0.16,0.17)    (0.15,0.16)  (0.15,0.17)     

   50     0.346           0.302           0.328        0.282       
       (0.29,0.37)     (0.29.0.31)    (0.31,0.34)  (0.26,0.30)     
  100     0.706           0.572           0.540        0.530       

       (0.58,0.81)     (0.52,0.65)    (0.48,0.62)  (0.47,0.62)     
  500     3.898           4.486           3.202        2.990       
       (3.25,4.54)     (4.03,4.85)    (2.41,3.87)  (2.45,3.48)     

 1000     9.178          11.448            +           6.568       
       (7.03,10.44)    (9.88,12.71)        +       (5.87,7.68)     
 2000    19.984          31.872            +          14.908       

      (18.06,21.55)   (24.52,35.22)        +       (13.56,16.23)   
 5000    57.286         141.234            +          58.314       
      (49.53,64.24)   (129.20,154.03)      +       (49.12,65.17)   

10000   130.79          475.826            +         151.526       
      (103.20,183.45) (421.40,521.39)      +       (144.94,165.62) 
+ Failed to compute correct answers. 
See table 7 for abbreviations. 

 
     In table 11, when the number of parameters is seven, BS algorithm failed to compute the correct 
answer for a sample of sizes 1000 and more. AFK is the best for smaller samples, but for large samples, 
algorithm 4 is again superior. BR algorithm is in the third position. 
     In table 12, with ten parameters, BS and AFK algorithms failed to compute correct answers for the 
larger sample sizes. BR algorithm is the most efficient with respect to accuracy.  Algorithm 4 remains in 
the second position of both computing time and accuracy, except for sample size of 10000, where 
algorithm 4 is the most efficient. 
 

Table 12. CPU times for multiple model (m=10) selected algorithms 
  n     B(Alg.4)         BR            BS           AFK       

   20     0.276            0.212            0.218        0.212    
       (0.27,0.29)      (0.20,0.23)     (0.21,0.22)  (0.20,0.23)  

   50     0.956            0.502            0.492        0.398    
       (0.69,1.72)      (0.47,0.54)     (0.43,0.54)  (0.35,0.44)  
  100     2.414            1.144            0.998        0.776    

       (1.55,4.78)      (1.03,1.25)     (0.86,1.11)  (0.66,0.91)  
  500    13.980            8.446            5.970        5.210    
      (11.76,16.30)     (7.88,9.99)     (4.81,6.92)  (4.43,5.78)  

 1000    62.624           23.506             +          11.144    
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      (22.23,193.19)   (20.26,26.93)         +       (9.08,13.14) 

 2000   109.268           62.756             +            +       
      (72.20,278.27)   (59.43,65.66)         +            +       
 5000   409.438          284.618             +            +       

      (154.64,1010.92) (240.02,322.47)       +            +       
10000   679.540          967.794             +            +       
      (283.04,1076.04) (770.79,1064.43)      +            +       
+ Failed to compute correct answers. 
See table 7 for abbreviations. 

 
5. Conclusions 

     Since in computational algorithms, accuracy is more important than efficiency, those L1 norm 
algorithms should be selected which produce correct solutions, and among them, the fastest one should be 
selected. Algorithm 2 and algorithm of Josvanger and Sposito (1983) both computed correct answers for 
two parameters linear L1 norm regression model. Algorithm 2, which is faster than JS introduced for 
applied works. 
     For multiple regression, BS and AFK algorithms failed to compute correct answers in larger models. As 
stated by Gentle and Narula and Sposito (1987), because of the accumulated roundoff error, algorithm of 
Bloomfield and Steiger (1980) was not usable in larger size problems. Coding to avoid rounding problems 
often increase the execution time, so it is not clear what would happen to the relative efficiency if the BS 
code is modified. This is also the case for the algorithm of Armstrong and Frome and Kung (1979), 
though it is less sensitive to rounding error than BS algorithm. However, from the previous tables, it may 
be concluded that algorithm 4 is more appropriate for models with less than ten parameters and algorithm 
of Barrodale and Roberts (1973,74) for the ten parameters model. This last conclusion is not very 
constructive, because in the case of ten parameters model with 10000 observations algorithm 4 is highly 
superior to BR.  However, since in applied work, we are not always confronted with a very large amount 
of data and parameters, this conclusion is poor in an operational sense. 
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