NAVIGATING MARKETS WITH AI: THE NEXT FRONTIER IN INVESTMENT STRATEGY

  • Nurjahan Akter Monira Lecturer, Department of Business Studies, State University of Bangladesh, South Purbachal, Kanchan, Dhaka-1461, Bangladesh https://orcid.org/0009-0002-4387-2602
Keywords: Artificial Intelligence, Investment Strategies, Predictive Analytics, Financial Markets, Emerging Trends.

Abstract

The financial market is changing rapidly, and to sustain themselves in this dynamic investment world, investors need to adopt various strategies. Traditional investment tactics rely entirely on human intuitions and historical data, which may fail to keep pace with the ever-changing nature of investment. If someone fails to adopt the need-based strategies, they will be kept in the market. Investors need more complex tools and approaches to make sound investment decisions and withstand the fluctuating market environment. Technology has made it easier by providing these tools to analyze large amounts of data and identify trends, thus crafting prudent investment strategies. One of the blessings of technology that is changing the investment world dynamically is artificial intelligence (AI). Therefore, this research aims to investigate the multifaceted role of Artificial Intelligence in investment strategies, emphasizing its predictive capabilities, data management efficiencies, user engagement enhancements, practical applications, and emerging trends. This paper employs a qualitative approach with a significant focus on existing literature and case study analysis to give a comprehensive overview of the impact of AI on investment strategies. The analysis reveals that integrating AI into investment strategies is redesigning the investment landscape, offering unprecedented opportunities such as improved predictive capabilities and risk management, which help make informed decisions. The study's finding provides valuable insights for investors and financial institutions seeking to optimize their strategies with AI in an increasingly data-driven investment environment.

JEL Classification Codes: G11, G17, E44.

References

Abele, D., & D’Onofrio, S. (2020). Artificial intelligence–the big picture. Cognitive Computing: Theorie, Technik und Praxis, 31-65. https://doi.org/10.1007/978-3-658-27941-7_2

Adebiyi, S. O., Ogunbiyi, O. O., & Amole, B. B. (2022). Artificial intelligence model for building investment portfolio optimization mix using historical stock prices data. Rajagiri Management Journal, 16(1), 36-62. https://doi.org/10.1108/RAMJ-07-2020-0036

Aldridge, I., & Avellaneda, M. (2021). Big data science in finance. John Wiley & Sons.

Alessandretti, L., ElBahrawy, A., Aiello, L. M., & Baronchelli, A. (2018). Anticipating cryptocurrency prices using machine learning. Complexity, 2018(1), 8983590. https://doi.org/10.1155/2018/8983590

Amirzadeh, R., Nazari, A., & Thiruvady, D. (2022). Applying artificial intelligence in cryptocurrency markets: A survey. Algorithms, 15(11), 428. https://doi.org/10.3390/a15110428

Anand, Y., Irfan, M., & Hasan, M. (2024). AI vs. Traditional Portfolio Management: A Study on Indian Investors. In AI-Driven Decentralized Finance and the Future of Finance (pp. 318-335). IGI Global. https://doi.org/10.4018/979-8-3693-6321-8.ch015

Anderson, J. L., & Coveyduc, J. L. (2020). Artificial intelligence for business: A roadmap for getting started with AI. John Wiley & Sons.

Bae, J., Yu Hung, C., & van Lent, L. (2023). Mobilizing text as data. European Accounting Review, 32(5), 1085-1106. https://doi.org/10.1080/09638180.2023.2218423

Barile, D., Secundo, G., & Bussoli, C. (2024). Exploring artificial intelligence robo-advisor in banking industry: a platform model. Management Decision. Vol. ahead-of-print No. ahead-of-print. https://doi.org/10.1108/MD-08-2023-1324

Campbell, C., Sands, S., Ferraro, C., Tsao, H. Y. J., & Mavrommatis, A. (2020). From data to action: How marketers can leverage AI. Business Horizons, 63(2), 227–243. https://doi.org/10.1016/j.bushor.2019.12.002

Cornell, B. (2020). Medallion Fund: The Ultimate Counterexample?. The Journal of Portfolio Management, 46(4), 156–159. https://doi.org/10.3905/jpm.2020.1.128

Du, S., & Xie, C. (2021). Paradoxes of artificial intelligence in consumer markets: Ethical challenges and opportunities. Journal of Business Research, 129, 961–974. https://doi.org/10.1016/j.jbusres.2020.08.024

Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., ... & Williams, M. D. (2021). Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International journal of information management, 57, 101994. https://doi.org/10.1016/j.ijinfomgt.2019.08.002

El Hajj, M., & Hammoud, J. (2023). Unveiling the influence of artificial intelligence and machine learning on financial markets: A comprehensive analysis of AI applications in trading, risk management, and financial operations. Journal of Risk and Financial Management, 16(10), 434. https://doi.org/10.3390/jrfm16100434

El Modni, R., & El Kabbouri, M. (2024). The Role of AI and Corporate Culture in the Moroccan Banking Sector: Facilitating Change and Organizational Transformation. Journal of Economics, Finance and Management (JEFM), 3(1), 164-180. https://doi.org/10.5281/zenodo.10685075

Evstigneev, I., Hens, T., Potapova, V., & Schenk-Hoppé, K. R. (2020). Behavioral equilibrium and evolutionary dynamics in asset markets. Journal of Mathematical Economics, 91, 121-135. https://doi.org/10.1016/j.jmateco.2020.09.004

Ferreira, F. G., Gandomi, A. H., & Cardoso, R. T. (2021). Artificial intelligence applied to stock market trading: a review. IEEE Access, 9, 30898-30917. https://doi.org/10.1109/ACCESS.2021.3058133

Garg, P. K. (2021). Overview of artificial intelligence. In Artificial intelligence (pp. 3–18). Chapman and Hall/CRC. eBook ISBN9781003140351

Hariyani, D., Hariyani, P., Mishra, S., & Sharma, M. K. (2024). Leveraging digital technologies for advancing circular economy practices and enhancing life cycle analysis: A systematic literature review. Waste Management Bulletin, 2(3), 69-83. https://doi.org/10.1016/j.wmb.2024.06.007

Hu, Y. J., van Gurp, R., Somai, A., Kooijman, H., & Rellermeyer, J. S. (2021). CURRENCY: Live Digital Asset Trading Using a Recurrent Neural Network-based Forecasting System. arXiv preprint arXiv:2106.06972. https://doi.org/10.48550/arXiv.2106.06972

Ionescu, S. A., & Diaconita, V. (2023). Transforming financial decision-making: the interplay of AI, cloud computing and advanced data management technologies. International Journal of Computers Communications & Control, 18(6), 5735. https://doi.org/10.15837/ijccc.2023.6.5735

Javaid, H. A. (2024). Ai-driven predictive analytics in finance: Transforming risk assessment and decision-making. Advances in Computer Sciences, 7(1), 1-9.

Jensen, G. R. E. G., Schiller, A. L. E. X., Cofsky, L. A. R. R. Y., Miles, E. R. I. N., Fedel, N. A. S. S. I. M., & Davis, G. A. R. D. N. E. R. (2020). The Coronavirus’s $4 Trillion Hit to US Corporations. Retrieved from Bridgewater:https://www.bridgewater.com/research-library/daily-observations/Greg-Jensen-the-coronavirus-4-trillion-hit-to-us-corporations.

Jin, Z., Yang, Y., & Liu, Y. (2020). Stock closing price prediction based on sentiment analysis and LSTM. Neural Computing and Applications, 32, 9713-9729. https://doi.org/10.1007/s00521-019-04504-2

John, M. M., Olsson, H. H., & Bosch, J. (2023). Towards an AI‐driven business development framework: A multi‐case study. Journal of Software: Evolution and Process, 35(6), e2432. https://doi.org/10.1002/smr.2432

Kalashnikov, R., & Kartbayev, A. (2024). Assessment of the impact of big data analysis on decision-making in stock trading processes. Procedia Computer Science, 231, 786-791. https://doi.org/10.1016/j.procs.2023.12.137

Kallini, J. R., & Moriarty, J. M. (2022, June). Artificial Intelligence in Interventional Radiology. In Seminars in Interventional Radiology (Vol. 39, No. 03, pp. 341-347). Thieme Medical Publishers, Inc. https://doi.org/10.1055/s-0042-1753524

Kasaraneni, R. K. (2021). AI-Enhanced Portfolio Optimization: Balancing Risk and Return with Machine Learning Models. African Journal of Artificial Intelligence and Sustainable Development, 1(1), 219-265.

Kavin, K. V. (2023). Applications of Machine Learning in Predictive Analysis and Risk Management in Trading. International Journal of Innovative Research in Computer Science & Technology, 11(6), 18–25. https://doi.org/10.55524/ijircst.2023.11.6.4

Khan, W., Malik, U., Ghazanfar, M. A., Azam, M. A., Alyoubi, K. H., & Alfakeeh, A. S. (2020). Predicting stock market trends using machine learning algorithms via public sentiment and political situation analysis. Soft Computing, 24(15), 11019–11043. https://doi.org/10.1007/s00500-019-04347-y

Kılıç, G., & Türkan, Y. (2023). The Emergence of Islamic Fintech and Its Applications. International Journal of Islamic Economics and Finance Studies, 9(2), 212-236. https://doi.org/10.54427/ijisef.1328087

Krichen, M., & Abdalzaher, M. S. (2024). Performance enhancement of artificial intelligence: A survey. Journal of Network and Computer Applications, 232, 104034. https://doi.org/10.1016/j.jnca.2024.104034

Kumar, S., Lim, W. M., Sivarajah, U., & Kaur, J. (2023). Artificial intelligence and blockchain integration in business: trends from a bibliometric-content analysis. Information Systems Frontiers, 25(2), 871-896. https://doi.org/10.1007/s10796-022-10279-0

Lehalle, C. A., & Raboun, A. (2022). Financial Markets in Practice: From Post-Crisis Intermediation to FinTechs.

Li, S., Xu, H., Lu, T., Cao, G., & Zhang, X. (2024). Emerging technologies in finance: Revolutionizing investment strategies and tax management in the digital era. Management Journal for Advanced Research, 4(4), 35–49. https://doi.org/10.5281/zenodo.13283670

Longo, J. M. (2021). Hedge Funds: Overview, Strategies, and Trends. Encyclopedia of Finance, 1–23. https://doi.org/10.1007/978-3-030-73443-5_54-1

Loureiro, S. M. C., Guerreiro, J., & Tussyadiah, I. (2021). Artificial intelligence in business: State of the art and future research agenda. Journal of business research, 129, 911-926. https://doi.org/10.1016/j.jbusres.2020.11.001

Madakam, S., Uchiya, T., Mark, S., & Lurie, Y. (2022). Artificial intelligence, machine learning, and deep learning (literature: review and metrics). Asia-Pacific Journal of Management Research and Innovation, 18(1-2), 7-23. https://doi.org/10.1177/2319510X221136682

Mah, P. M., Skalna, I., & Muzam, J. (2022). Natural language processing and artificial intelligence for enterprise management in the era of industry 4.0. Applied Sciences, 12(18), 9207. https://doi.org/10.3390/app12189207

Martins, C. J. L. (2022). Information diffusion, trading speed and their potential impact on price efficiency–Literature review. Borsa Istanbul Review, 22(1), 122-132. https://doi.org/10.1016/j.bir.2021.02.006

Mich, L. (2020). Artificial intelligence and machine learning. Handbook of e-Tourism, 1–21. https://doi.org/10.1007/978-3-030-05324-6_25-1

Mishra, A. K., Anand, S., Debnath, N. C., Pokhariyal, P., & Patel, A. (Eds.). (2024). Artificial Intelligence for Risk Mitigation in the Financial Industry. John Wiley & Sons. ISBN: 978-1-394-17555-0

Mizuta, T. (2020). Does an artificial intelligence perform market manipulation with its own discretion?--A genetic algorithm learns in an artificial market simulation. arXiv preprint arXiv:2005.10488. https://doi.org/10.1109/SSCI47803.2020.9308349

Nabipour, M., Nayyeri, P., Jabani, H., Shahab, S., & Mosavi, A. (2020). Predicting stock market trends using machine learning and deep learning algorithms via continuous and binary data; a comparative analysis. Ieee Access, 8, 150199-150212. https://doi.org/10.1109/ACCESS.2020.3015966

Nichols, J. A., Herbert Chan, H. W., & Baker, M. A. (2019). Machine learning: applications of artificial intelligence to imaging and diagnosis. Biophysical reviews, 11, 111–118. https://doi.org/10.1007/s12551-018-0449-9

Osasona, F., Amoo, O. O., Atadoga, A., Abrahams, T. O., Farayola, O. A., & Ayinla, B. S. (2024). Reviewing the ethical implications of AI in decision-making processes. International Journal of Management & Entrepreneurship Research, 6(2), 322-335. https://doi.org/10.51594/ijmer.v6i2.773

Rane, N. L., Choudhary, S. P., & Rane, J. (2024). Artificial Intelligence-driven corporate finance: enhancing efficiency and decision-making through machine learning, natural language processing, and robotic process automation in corporate governance and sustainability. Studies in Economics and Business Relations, 5(2), 1-22. https://doi.org/10.48185/sebr.v5i2.1050

Rao, A., & Hossain, M. R. (2024). The future of finance: Artificial intelligence's influence on behavioral investment decisions. In Leveraging AI and Emotional Intelligence in Contemporary Business Organizations (pp. 166-186). IGI Global. https://doi.org/10.4018/979-8-3693-1902-4.ch010

Rath, S., Das, N. R., & Pattanayak, B. K. (2024). An Analytic Review on Stock Market Price Prediction using Machine Learning and Deep Learning Techniques. Recent Patents on Engineering, 18(2), 88-104. https://doi.org/10.2174/1872212118666230303154251

Rollins, M., & Cliff, D. (2020). Which trading agent is best? Using a threaded parallel simulation of a financial market changes the pecking order. arXiv preprint arXiv:2009.06905. https://doi.org/10.48550/arXiv.2009.06905

Romanko, O., Narayan, A., & Kwon, R. H. (2023, November). Chatgpt-based investment portfolio selection. In Operations Research Forum (Vol. 4, No. 4, p. 91). Cham: Springer International Publishing. https://doi.org/10.1007/s43069-023-00277-6

Romero, P., & Fitz, S. (2021). The use of psychometrics and artificial intelligence in alternative finance. The Palgrave handbook of technological finance, 511–587. https://doi.org/10.1007/978-3-030-65117-6_21

Rostami, M., Berahmand, K., Nasiri, E., & Forouzandeh, S. (2021). Review of swarm intelligence-based feature selection methods. Engineering Applications of Artificial Intelligence, 100, 104210. https://doi.org/10.1016/j.engappai.2021.104210

Sironi, P. (2021). Banks and fintech on platform economies: contextual and conscious banking. John Wiley & Sons. ISBN: 978-1-119-75697-2.

Tao, R., Su, C. W., Xiao, Y., Dai, K., & Khalid, F. (2021). Robo advisors, algorithmic trading and investment management: Wonders of fourth industrial revolution in financial markets. Technological Forecasting and Social Change, 163, 120421. https://doi.org/10.1016/j.techfore.2020.120421

Truby, J. (2020). Governing artificial intelligence to benefit the UN sustainable development goals. Sustainable Development, 28(4), 946–959. https://doi.org/10.1002/sd.2048

Valle-Cruz, D., Fernandez-Cortez, V., López-Chau, A., & Sandoval-Almazán, R. (2022). Does twitter affect stock market decisions? Financial sentiment analysis during pandemics: A comparative study of the h1n1 and the covid-19 periods. Cognitive computation, 14(1), 372-387. https://doi.org/10.1007/s12559-021-09819-8

Vincent, V. U. (2021). Integrating intuition and artificial intelligence in organizational decision-making. Business Horizons, 64(4), 425-438. https://doi.org/10.1016/j.bushor.2021.02.008

Vinichenko, O., & Hrybkova, M. (2021). Analysis of the Hedge Fund Industry for the Purpose of Implementation in the Financial System of Ukraine. ISSN 2415-3974. https://doi.org/10.32434/2415-3974-2021-13-1-49-61

Youvan, D. C. (2024). Emergent Phenomena in Modern Financial Systems: Unanticipated Risks and Their Mitigation. https://doi.org/10.13140/RG.2.2.28648.48646
Published
2024-12-13
How to Cite
Monira, N. A. (2024). NAVIGATING MARKETS WITH AI: THE NEXT FRONTIER IN INVESTMENT STRATEGY. American Finance & Banking Review, 9(1), 1-10. https://doi.org/10.46281/amfbr.v9i1.2259
Section
Research Paper/Theoretical Paper/Review Paper/Short Communication Paper