SMART AND INTELLIGENT PRODUCTION STRATEGY FOR THE FLOWER MARKET USING DATA MINING KNOWLEDGE-BASED DECISION
Abstract
The agriculture industry has been an enormous economic pillar in the production and consumption market value chain. The agriculture industry resets flower production factors with the agricultural technology revolution. The fastest technology provides innovative and intelligent decision-making strategies in seasonal cut flowers to increase production. This study briefs out existing farming practices, chain activity and farming technology’s significant impacts on the agriculture field and garden industry. Authors try to investigate cut flower production status and analyze production values to design innovative and intelligent strategies, especially for seasonal flower production. The study employs a flower dataset; hence, it applies floral parameter inputs and data mining association rules to create an output of the flower production category, which fits appropriately to evaluate flower market production value in a particular season. The article's result reveals that the proposed flower production strategy provides efficient and intelligent guidelines to increase flower production according to market demand. This study suggests an intelligent and friendly production strategy for gardeners that indicates the flower market gets continuous and quality production to meet consumers’ immediate market demand.
JEL Classification Codes: Q130, Q160, Q180.
References
Ane, T., & Nepa, T. (2021).Statistical Survey of Students’ Performance: Online Education to COVID-19 in Bangladesh. Open Access Library Journal, 8(11), 1–10. https://doi.org/10.4236/oalib.1108054
Abbasi, M., Yaghmaee, M. H., & Rahnama, F. (2019). Internet of Things in agriculture: A survey. In: Third International Conference on Internet of Things and Applications (pp.1-12). Publisher: IEEE. https://doi.org/10.1109/IICITA.2019.8808839
Awan, S., Ahmed, S., Ullah, F., Nawaz, A., Khan, A., Uddin, M. I., Alharbi, A., Alosaimi, W., & Alyami, H. (2021). IoT with Block Chain: A Futuristic Approach in Agriculture and Food Supply Chain. Wireless Communications and Mobile Computing, 2021(1), 1–14. https://doi.org/10.1155/2021/5580179
Basnet, B., & Bang. J. (2018). The State-of-the-Art of Knowledge-Intensive Agriculture: A Review on Applied Sensing Systems and Data Analytics. Journal of Sensors, 2018(1), 1–13. https://doi.org/10.1155/2018/3528296
Band, B. H., & Ingole, A. D. (2019). IoT-Based Smart Solar Flower Water Pump System. Trends in Renewable Energy, 5(9), 229–236. https://doi.org/10.17737/tre.2019.5.3.0098
Bahel, V., Pillai, S., & Malhotra, M. (2020). A Comparative Study on Various Binary Classification Algorithms and their Improved Variant for Optimal Performance. In: Conference: 2020 IEEE Region 10 Symposium (TENSYMP) (pp.495-498). Dhaka, June 5-7. Bangladesh: Publisher IEEE. https://doi.org/10.1109/TENSYMP50017.2020.9230877
Das, S., Mohanty, S., Sahu, G., & Sarkar, S. (2020). Sustainable agriculture: a path towards better future. Food and Scientific Reports, 1(9), 22-25. Retrieved from https://www.researchgate.net/publication/344138243_Sustainable_agriculture_a_path_towards_better_future
Giri, B., & Beura, S. (2020). Effect of Inm Practices on Flowering of Hybrid Gerbera (Gerbera Jamesonii b.) Cv. SHIMMER in Open Field Condition. International Journal of Recent Scientific Research, 11(8C), 39522-39525.
Home, R., Lewis, O., Bauer, N., Fliessbach, A., Frey, D., Lichtsteiner, S., Moretti, M., Tresch, S., Young, C., Zanetta, A., & Stolze, M. (2018). Effects of garden management practices, by different types of gardeners, on human well-being and ecological and soil sustainability in` Swiss cities. Urban Ecosystems, 22, 189–199. https://doi.org/10.1007/s11252-018-0806-2
Issac, K., Bharadwaj, K., Nagarajan, B., & Rajaguru, H. (2021). Investigation on enhancing the binary classification accuracy of supervised classifiers using various transforms. In: I.O.P. Conference Series: Materials Science and Engineering (pp.1-6). Orlando, October 10-14. Florida: I.O.P. Publishing. https://doi.org/10.1088/1757-899X/1084/1/012032
Jia, A. (2021). Intelligent Garden Planning and Design Based on Agricultural Internet of Things. Complexity, 2021(4), 1–10. https://doi.org/10.1155/2021/9970160
Kanwar, J. K., & Kumar, S. (2008). In vitro propagation of Gerbera – A Review. Hort. Sci., 35(1), 35–44. https://doi.org/10.17221/651-HORTSCI
Kaila, H., & Tarp, F. (2019). Can the Internet improve agricultural production? Evidence from Viet Nam. Agricultural Economics, 50(6), 675-691. https://doi.org/10.1111/agec.12517
Mo, K. H., Alengaram, U. J., & Jumaat, M. Z. (2014). A Review on the Use of Agriculture Waste Material as Lightweight Aggregate for Reinforced Concrete Structural Members. Advances in Materials Science and Engineering, 2014(1), 1-9. https://dx.doi.org/10.1155/2014/365197
Maitra, S., Shankar, T., Palai, J. B., & Sairam, M. (2020). Cultivation of Gerbera in Polyhouse. In: S. Maitra, D. J. Gaikwad, & T. Shankar (Eds.), Protected Cultivation and Smart Agriculture (pp.219- 226). New Delhi Publishers: New Delhi. https://doi.org/10.30954/NDP-PCSA.2020.23
Milovic, B., & Radojevic, V. (2015). Application of data mining in agriculture. Bulgarian Journal of Agricultural Science, 21(1), 26-34. Retrieved from https://www.agrojournal.org/21/01-03.pdf
Navya, S. T., Girwani, A., Manohar, R., & Saidaiah, P. (2017). STUDIES ON TISSUE CULTURE IN GERBERA (Gerbera et al.). International Journal of Agriculture Sciences, 9(17), 4161–4165. Retrieved from https://journals.indexcopernicus.com/api/file/viewByFileId/71216.pdf
Pongnumkul, S., Chaovalit, P., & Surasvadi, N. (2015). Applications of Smartphone-Based Sensors in Agriculture: A Systematic Review of Research. Journal of Sensors, 2015(1), 1-18. https://dx.doi.org/10.1155/2015/195308
Prodhan, A. S., Sarker, N. I., Islam, S., & Ali, A. (2017). Status and Prospect of Gerbera Cultivation in Bangladesh. International Journal of Horticulture, Agriculture and Food Science, 1(1), 24-29. Retrieved from https://www.academia.edu/34002076/Status_and_Prospect_of_Gerbera_Cultivation_in_Bangladesh
Pierrette, C. T., Du, J. G., & Diakité, D. (2021). Sustainable agricultural practices adoption. Agriculture, 67(4), 166-176. https://doi.org/10.2478/agri-2021-0015
Reganold, J. P., Papendick, R. I., & Parr, J. F. (1990). Sustainable Agriculture. Scientific American, 262(6), 112-120. https://doi.org/10.1038/scientificamerican0690-112
Rayhan, M. R., & Rashid, M. H. A. (2020). Effects of varieties and inorganic fertilizers on growth and flowering of gerbera (Gerbera jamesonii). Journal of Agriculture, Food and Environment (JAFE), 1(4), 6-12. https://doi.org/10.47440/JAFE.2020.1402
Sabir, S., Arshad, M., & Chaudhari, S. K. (2014). Zinc Oxide Nanoparticles for Revolutionizing Agriculture: Synthesis and Applications. Scientific World Journal, 2014(1), 1–8. https://doi.org/10.1155/2014/925494
Steinbach, M., & Tan, P. N. (2009). K.N.N.: K-N Nearest Algorithm (1st ed.).Taylor &Francis Group, L.L.C.: Chapman & Hall/C.R.C. Retrieved from https://vincentqin.gitee.io/blogresource-2/cv-books/8-kNN.pdf
Tiwari, A., Singh, A. K., Kanth, N., & Pal, S. (2016). Computer-Aided Designing for Landscape Gardening. The Global Journal of Pharmaceutical Research, 5(5), 386-388. Retrieved from https://www.researchgate.net/publication/311679804_Computer_Aided_Designing_for_Landscape_Gardening
Warren, M. (2004). Farmers online: drivers and impediments in adoption of Internet in U.K. agricultural businesses. Journal of Small Business Enterprise Development, 11(3), 371–381. https://doi.org/10.1108/14626000410551627
Wang, X. G., Lin, W., Zeng, W. H., & Zeng, W. (2010). Design and Key Technology of Gardening Information Management System Based on Data Center. Journal of Geographic Information System, 2(2), 100-105. https://doi.org/10.4236/jgis.2010.22015
White, P. J., Crawford, J. W., Álvarez, M. C. D., & Moreno, R. G. (2012). Soil Management for Sustainable Agriculture. Applied and Environmental Soil Science, 2012(1), 1-3. http://dx.doi.org/10.1155/2012/850739
Wang, W., Cao, X.H., Miclsus, M., Xu, J., & Xiong, W. (2017). The Promise of Agriculture Genomics. International Journal of Genomics, 2017(1), 1–3. https://doi.org/10.1155/2017/9743749
Copyright (c) 2023 Tanjea Ane, Tabatshum Nepa, Mahfuzur Rahman Khan
This work is licensed under a Creative Commons Attribution 4.0 International License.